AP Calculus TEST: 3.1-3.7, NO CALCULATOR

Part I: Multiple Choice—Put the CAPITAL letter of the correct response in the blank

The graph of the function y = f(x) is shown above. Use the graph to answer questions 1 - 5. *Assume all CAPITAL letters represent the *x*-values of the indicated points.

- 1. On the interval (F,G), which of the following is true?
 - I. f(x) < 0
- II. f'(x) > 0

- (A) I only
- (B) I and II only (C) I and III only
- (D) I, II, and III
- 2. How many critical values does y = f(x) have on the interval shown?
 - (A) 2
- (B)3
- (C) 4
- (D) 5
- ___ 3. How many inflection values does y = f(x) have on the interval shown?
 - (A) 1 (B) 2
- (C) 3
- (D) 4
- 4. How many values satisfy the MVT for y = f(x) on the interval [A, I]?
 - (A) 0
- (B) 1
- (C) 2
- (D)3
- 5. Which of the following inequalities is correct?
- (A) f(B) < f'(B) < f''(B) (B) f'(B) < f(B) < f''(B) (C) f''(B) < f'(B) < f(B) (D) f''(B) < f(B) < f'(B)

 6. A function y = f(x) has the properties that f'(a) = 0 and f"(a) = 0. Which one of the following statements must be true? (A) The graph of y = f(x) has a horizontal tangent at (a, f(a)). (B) (a, f(a)) is a point of inflection (C) (a, f(a)) is either a local maximum or a local minimum point. (D) f may be discontinuous at x = a.
7. Given any given function $y = f(x)$, how many of the following statements must be true? I. If $f''(a) < 0$, then the graph of $y = f(x)$ is concave up at $x = a$. II. If $f'(a)$ does not exist, then $x = a$ is not in the domain of $y = f(x)$. III. If $f'(a) = 0$ and $f''(a) > 0$, then $f(a)$ is a local max. IV. If $f'(a) = DNE$ and $f'(x)$ changes from neg to pos at $x = a$, then $f(a)$ is a local min. (A) 0 (B) 1 (C) 2 (D) 3
8. The function $y = f(x)$ is twice differentiable with $f(3) = -2$, $f'(3) = \frac{1}{2}$, and $f''(3) = 1$. What is the value of the approximation of $f(4)$ using the line tangent to the graph of $y = f(x)$ at $x = 3$? (A) -1.9 (B) -1.7 (C) -1.5 (D) -1.3
9. Given L feet of fencing, what is the maximum number of square feet that can be enclosed if the fencing is used to make three sides of a rectangular pen, using an existing wall as the fourth side $\frac{L^2}{4}$ (B) $\frac{L^2}{8}$ (C) $\frac{L^2}{9}$ (D) $\frac{L^2}{16}$

Part II: Free Res	ponse—Do the wor	k in the space i	provided. Use	proper notation.
	P 0 11 10 11 0 1		pro , resear. CDe	proper 110 000010111

10. (1981 AB3) Let f be the function defined by $f(x) = 12x^{2/3} - 4x$.

(a) Find the intervals on which f is increasing.	
(a) I ma the intervals on which j is increasing.	
(b) Find the <i>x</i> - and <i>y</i> - coordinates of all relative maximum points. Justify.	
$\int (0) f \sin u dx - a \sin y - coordinates of an relative maximum points. Justify.$	
(c) Find the r- and v- coordinates of all relative minimum points. Justify	
(c) Find the <i>x</i> - and <i>y</i> - coordinates of all relative minimum points. Justify.	
(c) Find the <i>x</i> - and <i>y</i> - coordinates of all relative minimum points. Justify.	
(c) Find the <i>x</i> - and <i>y</i> - coordinates of all relative minimum points. Justify.	
(c) Find the <i>x</i> - and <i>y</i> - coordinates of all relative minimum points. Justify.	
(c) Find the <i>x</i> - and <i>y</i> - coordinates of all relative minimum points. Justify.	
(c) Find the <i>x</i> - and <i>y</i> - coordinates of all relative minimum points. Justify.	
(c) Find the <i>x</i> - and <i>y</i> - coordinates of all relative minimum points. Justify.	
(c) Find the <i>x</i> - and <i>y</i> - coordinates of all relative minimum points. Justify.	
(c) Find the <i>x</i> - and <i>y</i> - coordinates of all relative minimum points. Justify.	
(c) Find the <i>x</i> - and <i>y</i> - coordinates of all relative minimum points. Justify.	
(c) Find the <i>x</i> - and <i>y</i> - coordinates of all relative minimum points. Justify.	
(c) Find the <i>x</i> - and <i>y</i> - coordinates of all relative minimum points. Justify.	
(c) Find the x- and y- coordinates of all relative minimum points. Justify.	
(c) Find the <i>x</i> - and <i>y</i> - coordinates of all relative minimum points. Justify.	
(c) Find the <i>x</i> - and <i>y</i> - coordinates of all relative minimum points. Justify.	
(c) Find the <i>x</i> - and <i>y</i> - coordinates of all relative minimum points. Justify.	
(c) Find the <i>x</i> - and <i>y</i> - coordinates of all relative minimum points. Justify.	
(c) Find the <i>x</i> - and <i>y</i> - coordinates of all relative minimum points. Justify.	
(c) Find the <i>x</i> - and <i>y</i> - coordinates of all relative minimum points. Justify.	
(c) Find the <i>x</i> - and <i>y</i> - coordinates of all relative minimum points. Justify.	
(c) Find the <i>x</i> - and <i>y</i> - coordinates of all relative minimum points. Justify.	
(c) Find the <i>x</i> - and <i>y</i> - coordinates of all relative minimum points. Justify.	
(c) Find the <i>x</i> - and <i>y</i> - coordinates of all relative minimum points. Justify.	
(c) Find the <i>x</i> - and <i>y</i> - coordinates of all relative minimum points. Justify.	
(c) Find the <i>x</i> - and <i>y</i> - coordinates of all relative minimum points. Justify.	
(c) Find the <i>x</i> - and <i>y</i> - coordinates of all relative minimum points. Justify.	
(c) Find the <i>x</i> - and <i>y</i> - coordinates of all relative minimum points. Justify.	
(c) Find the <i>x</i> - and <i>y</i> - coordinates of all relative minimum points. Justify.	

		_
(d) Find the intervals on which	f is concave downward.	
(e) Using the information found	d in the parts above, sketch the graph of f .	
<u> </u>		