\qquad Cattle Brand \qquad
AP Calculus TEST 3.6-4.1, No Calculator
Section I: Multiple Choice-put the CAPITAL letter of the correct answer choice to the left of each question number.

1. A conical-shaped paper cup is shown in the diagram below.

$$
V=\frac{\pi}{3}\left(\frac{1}{9} h^{2}\right) h
$$

$$
V=\frac{\pi}{27} h^{3}
$$

$$
\frac{d}{d t}: \frac{d v}{d t}=\frac{\pi}{9} h^{2} \cdot \frac{d h}{d t}
$$

$$
\text { When } h=4: 1=\frac{\pi}{9}\left(4^{2}\right) \frac{d h}{d t}
$$

$$
\frac{d h}{d t}=\frac{9}{16 \pi} \mathrm{~cm} / \mathrm{sec}
$$

If water cranberry juice is poured into the cup at a rate of 1 cubic centimeter per second, how fast is the depth of the cranberry juice in the cup increasing when the juice is 4 cm deep?
(A) $\frac{16 \pi}{9} \mathrm{~cm} / \mathrm{sec}$
(B) $\frac{9}{64 \pi} \mathrm{~cm} / \mathrm{sec}$
(C) $\frac{9}{16 \pi} \mathrm{~cm} / \mathrm{sec}$
(D) $\frac{64 \pi}{9} \mathrm{~cm} / \mathrm{sec}$
(E) $\frac{16}{9 \pi} \mathrm{~cm} / \mathrm{sec}$

$$
\frac{d V}{d t}=1, \frac{d h}{d t}=?, \frac{\sqrt{h}=4}{1,}
$$

2. Let f be a differentiable function such that $f(3)=2$ and $f^{\prime}(3)=5$. If the tangent line at $x=3$ is used to find an approximation to a zero of f, that approximation is

$$
\begin{array}{rlll}
\text { (A) } 0.4 & \text { (B) } 0.5 & \text { (C) } 2.6 & \text { (D) } 3.4 \\
& \text { (E) } 5.5 \\
\text { eq: } y=2+5 & (x-3)=0 \\
x-3=-\frac{2}{5} \\
& x=3-\frac{2}{5} \\
x=\frac{13}{5}=2.6
\end{array}
$$

3. $\int \frac{3 x^{5}+2 x^{3}-x^{2}}{x^{2}} d x=$
(A) $18 x^{6}+8 x^{2}-2 x+C$
(B) $\frac{3}{4} x^{4}+x^{2}-x+C$
(C) $\frac{15 x^{4}+6 x^{2}-2 x}{2 x}+C$
(D) $\frac{x^{6}+x^{4}-x^{3}}{6 x^{3}}+C$
(E) $3 x^{4}+2 x^{2}-x+C$
$\int\left[\frac{3 x^{5}}{x^{2}}+\frac{2 x^{3}}{x^{2}}-\frac{x^{2}}{x^{2}}\right] d x$
$\int\left[3 x^{3}+2 x-1\right] d x$
$\frac{3}{4} x^{4}+x^{2}-x+c$
D
4. At each point (x, y) on a curve, $\frac{d^{2} y}{d x^{2}}=6 x$. Additionally, the line $y=6 x+4$ is tangent to the curve at $x=-2$. Which of the following Is an equation fo the curve that satisfies these conditions?
(A) $y=6 x^{2}-32$
(B) $y=2 x^{3}+3 x-12$
(C) $y=2 x^{3}-3 x$
(D) $y=x^{3}-6 x-12$
(E) $y=x^{3}-6 x+12$
$\frac{d y}{d x}=3 x^{2}+c$
at $x=-2: \quad y^{\prime}(-2)=6$ (slope of tangent line)
for $\begin{aligned} y^{\prime}(-2)=6: \quad & =3(-2)^{2}+c \\ 6 & =12+c\end{aligned}$
$\begin{aligned} y(-2) & =6(-2)+4 \\ & =-12+4\end{aligned}$
$\quad \delta_{1} \frac{d y}{d x}=3 x^{2}-6$
$=-12+4$
$=-8$ (y-value of
tangent line)
B
5. $\int \frac{\sin 2 x}{\cos x} d x=$

$$
\begin{gathered}
y=x^{3}-6 x+c \\
\text { for } y(-2)=-8:-8=(-2)^{3}-6(-2)+c \\
-8=-8+12+c \\
c=-12 \\
\text { so, } y=x^{3}-6 x-12
\end{gathered}
$$

(A) $\cos x+C$
(B) $-2 \cos x+C$
(C) $-\cos 2 x+C$
(D) $2 \cos x+C$
(E) $\cos 2 x+C$
$\int \frac{2 \sin x \cos x}{\cos x} d x$
$\int 2 \sin x d x$
$-2 \cos x+C$
D
6. The sum of two positive integers is 90 . If the product of one integer and the square of the other is a maximum, the the larger integer is
(A) 75
(B) 50
(C) 30
(D) 60
(E) 80

$$
\begin{array}{ll}
a+b=90, & a, b \in \mathbb{Z}^{+} \\
a=9-b \rightarrow & a b^{2}=p \\
(9-b) b^{2}=p \\
& P=9 b^{2}-b^{3}, b \in(0,90) \\
p^{\prime}=180 b-3 b^{2}=0 \\
3 b(60-b)=0 \\
b=6, b=60
\end{array}
$$

7. $\int\left(x^{2}-2\right)^{2} d x=$
$\begin{array}{llll}\int\left[\begin{array}{lll}4 \\ x^{4}-4 x^{2}+4\end{array}\right] d x & \text { (A) } \frac{x^{5}}{5}-\frac{4 x^{3}}{3}+4 x+C & \text { (B) } \frac{\left(x^{2}-2\right)^{3}}{6 x}+C & \text { (C) }\left(\frac{x^{3}}{3}-2 x\right)^{2}+C \\ \frac{1}{5} x^{5}-\frac{4}{3} x^{3}+4 x & \text { (D) } \frac{2 x}{3}\left(x^{2}-2\right)^{3}+C & \text { (E) } \frac{x^{5}}{5}+4 x+C\end{array}$
$\frac{1}{5} x^{5}-\frac{4}{3} x^{3}+4 x$
$\frac{x^{5}}{5}-\frac{4 x^{3}}{3}+4 x+C$

A
8. Which of the following defines a function f such that $f^{\prime}(x)=\sqrt{x}$ with the initial condition $f(9)=0$?

$$
\begin{aligned}
& \text { (A) } f(x)=\frac{2}{3} x \sqrt{x}-18 \\
& \text { (B) } f(x)=\frac{x \sqrt{x}}{3}+9 \\
& \text { (C) } f(x)=x \sqrt{x}-3 x \\
& f^{\prime}=x^{1 / 2} \\
& \text { (D) } f(x)=\frac{1}{2} \sqrt{x}-3 \\
& \text { (E) } f(x)=\frac{3}{2} x \sqrt{x}-18 \\
& f=\frac{2}{3} x^{3 / 2}+c \\
& f=\frac{2}{3}(\sqrt{x})^{3}+C \quad \left\lvert\, \begin{array}{l}
80, \\
f(x)=\frac{2}{3} x^{3 / 2}-18
\end{array}\right. \\
& \text { for } f(\varphi)=0: 0=\frac{2}{3}(\sqrt{9})^{3}+c \quad \begin{array}{l}
f(x)=\frac{2}{3} x \cdot x^{1 / 2}-18 \\
f(x)=\frac{2}{3}
\end{array} \\
& 0=\frac{2}{3}(27)+c \quad f(x)=\frac{2}{3} x \sqrt{x}-18 \\
& 0=18+c \\
& c=-18
\end{aligned}
$$

9. The radius of a spherical ball Is decreasing at a constant rate of 3 centimeters per second. Find, In cubic centimeters per second, the rate of change of the volume of the ball when the radius is 5 cm .
(A) -60π
(B) -150π
(C) -300π
(D) -100π
(E) -12π

$$
\begin{array}{ll}
\frac{d r}{d t}=-3 & \quad\left(=\frac{4}{3} \pi r^{3}\right. \\
\frac{d v}{d t}=? & \frac{d}{d t}: \frac{d v}{d t}=4 \pi r^{2} \frac{d r}{d t} \\
r=5 & \text { when } r=5: \frac{d r}{d t}=4 \pi\left(\mathrm{~s}^{2}\right)(-3) \\
& =-300 \pi \mathrm{~cm}^{3} / \mathrm{sec}
\end{array}
$$

Part II: Free Response -Show all work in the space provided
10. Let $\frac{d^{2} y}{d x^{2}}=-3 x^{2}-4$ for some particular function $y=f(x)$.
(a) If $y^{\prime}(1)=5$ and $y(1)=-\frac{1}{4}$, find the particular solution $y=f(x)$. Show the work that leads to your answer with correct notation.

$$
\begin{aligned}
& \frac{d^{2} y}{d x^{2}}=-3 x^{2}-4 \\
& \frac{d y}{d x}=-x^{3}-4 x+c
\end{aligned}
$$

for $y^{\prime}(1)=5: 5=-1-4+C$ $C=10 \quad \sqrt{2}$
So, $\frac{d y}{d x}=-x^{3}-4 x+10$

$$
\begin{aligned}
& \frac{d y}{d x}=-x^{3}-4 x+10 \\
& y=-\frac{1}{4} x^{4}-2 x^{2}+10 x+D^{2} \\
& \text { for } y(1)=-\frac{1}{4}:-\frac{1}{4}=-\frac{1}{4}-2+10+D \\
& 0=8+D \\
& D=-8 \sqrt{4}
\end{aligned}
$$

(b) Write an equation for the tangent line to the particular solution $y=f(x)$ at $x=1$.

$$
\begin{aligned}
& p t:\left(1,-\frac{1}{4}\right) \\
& m: 5 \\
& \text { eq: } y=-\frac{1}{4}+5(x-1) \sqrt{6}
\end{aligned}
$$

(c) Use your equation from part (b) to approximate $f(1.2)$. Simplify your answer.

$$
\begin{aligned}
f(1.2) \approx y(1.2) & =-\frac{1}{4}+5(1.2-1) \\
& =-\frac{1}{4}+5(0.2) \\
& =-\frac{1}{4}+1 \\
i S Q U(G G L E & =\frac{3}{4} \text { or } 0.75
\end{aligned}
$$

(d) Is your approximation from part (c) and over- or an under-approximation? Justify.

$$
\text { from part (a): } \frac{d^{2} y}{d x^{2}}=-3 x^{2}-4<0 \quad \forall x \in R
$$

So, $y=f(x)$ is concave down $\forall x \in \mathbb{R}$ So, tangent lines are above the curve $y=f(x)$
So, $y(1.2)$ OVERAPPROXIMATES $f(1.2)$

