\qquad Date \qquad
\qquad
AP Calculus TEST 3.6-4.1, No Calculator
Section I: Multiple Choice—put the CAPITAL letter of the correct answer choice to the left of each question number.
\qquad 1. A conical-shaped paper cup is shown in the diagram below.

If water cranberry juice is poured into the cup at a rate of 1 cubic centimeter per second, how fast is the depth of the cranberry juice in the cup increasing when the juice is 4 cm deep?
(A) $\frac{16 \pi}{9} \mathrm{~cm} / \mathrm{sec}$
(B) $\frac{9}{64 \pi} \mathrm{~cm} / \mathrm{sec}$
(C) $\frac{9}{16 \pi} \mathrm{~cm} / \mathrm{sec}$
(D) $\frac{64 \pi}{9} \mathrm{~cm} / \mathrm{sec}$
(E) $\frac{16}{9 \pi} \mathrm{~cm} / \mathrm{sec}$
2. Let f be a differentiable function such that $f(3)=2$ and $f^{\prime}(3)=5$. If the tangent line at $x=3$ is used to find an approximation to a zero of f, that approximation is
(A) 0.4
(B) 0.5
(C) 2.6
(D) 3.4
(E) 5.5
-3. $\int \frac{3 x^{5}+2 x^{3}-x^{2}}{x^{2}} d x=$
(A) $18 x^{6}+8 x^{2}-2 x+C$
(B) $\frac{3}{4} x^{4}+x^{2}-x+C$
(C) $\frac{15 x^{4}+6 x^{2}-2 x}{2 x}+C$
(D) $\frac{x^{6}+x^{4}-x^{3}}{6 x^{3}}+C$
(E) $3 x^{4}+2 x^{2}-x+C$
_4. At each point (x, y) on a curve, $\frac{d^{2} y}{d x^{2}}=6 x$. Additionally, the line $y=6 x+4$ is tangent to the curve at $x=-2$. Which of the following Is an equation fo the curve that satisfies these conditions?
(A) $y=6 x^{2}-32$
(B) $y=2 x^{3}+3 x-12$
(C) $y=2 x^{3}-3 x$
(D) $y=x^{3}-6 x-12$
(E) $y=x^{3}-6 x+12$
5. $\int \frac{\sin 2 x}{\cos x} d x=$
(A) $\cos x+C$
(B) $-2 \cos x+C$
(C) $-\cos 2 x+C$
(D) $2 \cos x+C$
(E) $\cos 2 x+C$
\qquad 6. The sum of two positive integers is 90 . If the product of one integer and the square of the other is a maximum, the the larger integer is
(A) 75
(B) 50
(C) 30
(D) 60
(E) 80
7. $\int\left(x^{2}-2\right)^{2} d x=$
(A) $\frac{x^{5}}{5}-\frac{4 x^{3}}{3}+4 x+C$
(B) $\frac{\left(x^{2}-2\right)^{3}}{6 x}+C$
(C) $\left(\frac{x^{3}}{3}-2 x\right)^{2}+C$
(D) $\frac{2 x}{3}\left(x^{2}-2\right)^{3}+C$
(E) $\frac{x^{5}}{5}+4 x+C$
8. Which of the following defines a function f such that $f^{\prime}(x)=\sqrt{x}$ with the initial condition $f(9)=0$?
(A) $f(x)=\frac{2}{3} x \sqrt{x}-18$
(B) $f(x)=\frac{x \sqrt{x}}{3}+9$
(C) $f(x)=x \sqrt{x}-3 x$
(D) $f(x)=\frac{1}{2} \sqrt{x}-3$
(E) $f(x)=\frac{3}{2} x \sqrt{x}-18$
9. The radius of a spherical ball Is decreasing at a constant rate of 3 centimeters per second. Find, In cubic centimeters per second, the rate of change of the volume of the ball when the radius is 5 cm .
(A) -60π
(B) -150π
(C) -300π
(D) -100π
(E) -12π

Part II: Free Response—Show all work in the space provided
10. Let $\frac{d^{2} y}{d x^{2}}=-3 x^{2}-4$ for some particular function $y=f(x)$.
(a) If $y^{\prime}(1)=5$ and $y(1)=-\frac{1}{4}$, find the particular solution $y=f(x)$. Show the work that leads to your answer with correct notation.
(b) Write an equation for the tangent line to the particular solution $y=f(x)$ at $x=1$.
(c) Use your equation from part (b) to approximate $f(1.2)$. Simplify your answer.
(d) Is your approximation from part (c) and over- or an under-approximation? Justify.

