\qquad Date \qquad Dance Move \qquad
TEST: AP Calculus: Test—3.6-4.2. CALCULATOR PERMITTED
PART I: Multiple Choice. Put the Capital Letter of the correct answer choice in the space to the left of each problem number.
\qquad 1. Freudian Pizza Parlor sells a soda for $\$ 1.40$ and a slice of Freudian pizza for $\$ 2.50$. In any given week, they sell 500 sodas and 1,000 slices of pizza. The proprietors of the parlor determine that for every dime they increase the price of a pizza slice, they will sell 10 fewer sodas and 20 fewer slices. At what price should they sell their pizza slice if they wish to maximize their revenue?
(A) $\$ 4.80$
(B) $\$ 3.60$
(C) $\$ 3.40$
(D) $\$ 3.00$
(E) $\$ 2.75$

\qquad 2. The graph of $f(x)$ is shown above. Which of the following must be true?
I. $\int_{-6}^{-2} f(x) d x=\int_{2}^{6} f(x) d x$
II. $\int_{-2}^{2} f(x) d x=\int_{6}^{2} f(x) d x$
III. $\int_{0}^{1} f(x) d x=\int_{-2}^{-6} f(x) d x+\int_{1}^{2} f(x) d x$
(A) I only
(B) II only
(C) III only
(D) I and II only
(E) I, II, and III
-
3. If $\int_{-1}^{5} g(x) d x=11$ and $\int_{5}^{1} g(x) d x=-8$, what is $\int_{-1}^{1} g(x) d x$?
(A) -6
(B) 19
(C) -19
(D) 3
(E) -3
\qquad 4. Estimations for $\int_{0}^{3}\left(30-x^{3}\right) d x$ are calculated using a left Riemann sum (L), a right Riemann sum (R), and using trapezoids (T), each using 4 subintervals of equal width. Which of the following lists the estimations from least to greatest?
(A) $R<T<L$
(B) $R<L<T$
(C) $T<L<R$
(D) $L<R<T$
(E) $L<T<R$
5. The function $h(x)$ is continuous on the interval $[-4,12]$. Selected values of x and $f(x)$ are given in the table below. If $\int_{-4}^{12} f(x) d x$ is estimated using a right Riemann sum with 4 equal subintervals, a left Riemann sum with 4 equal subintervals, trapezoids with 4 equal subintervals, and a midpoint Riemann sum with 2 equal subintervals, what is the difference between the largest and smallest estimation?

x	-4	0	4	8	12
$f(x)$	3	9	-2	-6	-3

(A) 68
(B) 32
(C) 24
(D) 16
(E) 8

6. A trapezoid is pictured above. It has a base, a, that is a constant 10 inches while its top base, b, is increasing at a rate of 3 inches per minute while its height, h, is decreasing at a rate of $\frac{1}{2}$ inches per minute. When the top base is 4 inches and the height is 3 inches, how fast, in square inches per minute, is the area of the trapezoid changing?
(A) 8
(B) 2
(C) 1
(D) $-\frac{3}{4}$
(E) $-\frac{5}{2}$
7. Kool-Aid is draining from a conical tank whose base angle is 60° as shown in the figure at the right. When the height of the Kool-Aid is 3 feet, its height is decreasing at 6 inches per hour. At this moment, how fast, in cubic feet per hour, is the volume of the Kool-Aid decreasing?
(A) 162π
(B) 18π
(C) $\frac{13 \pi}{2}$
(D) $\frac{3 \pi}{2}$
(E) 3π

8. $\int \frac{\pi}{x^{e}} d x=$
(A) $\frac{\pi x^{1-e}}{1-e}+C$
(B) $\frac{\pi}{(e+1) x^{e+1}}+C$
(C) $\frac{\pi}{x^{e+1}}+C$
(D) $\pi x^{1-e}+C$
(D) $\frac{\pi x^{e+1}}{e+1}+C$
9. Use a tangent line approximation for $g(x)=\sqrt{x}$ at $x=64$ to estimate $\sqrt{65}-\sqrt{63}$.
(A) $\frac{1}{4}$
(B) $\frac{1}{8}$
(C) $\frac{1}{16}$
(D) $\frac{1}{32}$
(E) 0
10. $\int \frac{(\sqrt{x}-1)^{2}}{\sqrt{x}} d x=$
(A) $\frac{(\sqrt{x}-1)^{3}}{3 \sqrt{x}}+C$
(B) $\frac{(\sqrt{x}-1)^{3}}{3}+C$
(C) $\frac{2}{3} x^{3 / 2}+2 x^{1 / 2}+C$
(D) $\frac{1}{2} x^{1 / 2}-\frac{4}{3} x+x^{1 / 2}+C$
(E) $\frac{2}{3} x^{3 / 2}-2 x+2 x^{1 / 2}+C$

PART II: Free Response-Use Proper Notation
11. I was out collecting data yesterday and used it to approximate a differentiable function $y=f(x)$ represented in the table below.

x	$\mathbf{0}$	$\mathbf{4}$	$\mathbf{8}$	$\mathbf{1 1}$	$\mathbf{1 4}$	$\mathbf{1 5}$	$\mathbf{1 6}$
y	$\mathbf{3 0}$	$\mathbf{6}$	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{0}$	$\mathbf{- 1}$	$\mathbf{0}$

... use my data to approximate $\int_{0}^{16} f(x) d x$ using the following methods using the given number of subintervals, n. (simplify your answers):
(a) Left end-point Riemann Sums $(n=6)$.
(b) Right end-point Riemann Sums $(n=6)$
(c) Midpoint Riemann Sums $(n=3)$
(d) Trapezoidal Rule $(n=6)$
(e) Can any of the above calculations represent the approximate area under the function $y=f(x)$ on $[0,16]$? Why or why not?
(f) Approximate $f^{\prime}(12)$ from the table of values. Make sure to show your difference quotient.
(g) If the secant line on the interval $[11,14]$ was used to approximate $f(12)$, given that $f^{\prime}(x)<0$ and $f^{\prime \prime}(x)<0$ for all $x \in(11,14)$, would this approximation of $f(12)$ be an over or under approximation? Explain why..

