\qquad Date \qquad Per \qquad

AP Calculus: Test-4.1-4.2. CALCULATOR PERMITTED

PART I: Multiple Choice. Put the Capital Letter of the correct answer choice in the space to the left of each problem number.

1. (2008-10) The graph of the function f is shown below for $0 \leq x \leq 3$. Of the following, which has the least value?

(A) $\int_{1}^{3} f(x) d x$
(B) Left Riemann sum approximation of $\int_{1}^{3} f(x) d x$ with 4 subintervals of equal length
(C) Right Riemann sum approximation of $\int_{1}^{3} f(x) d x$ with 4 subintervals of equal length
(D) Midpoint Riemann sum approximation of $\int_{1}^{3} f(x) d x$ with 4 subintervals of equal length
(E) Trapezoidal sum approximation of $\int_{1}^{3} f(x) d x$ with 4 subintervals of equal length
___ 2. (2008-79) If $\int_{-5}^{2} f(x) d x=-17$ and $\int_{5}^{2} f(x) d x=-4$, what is the value of $\int_{-5}^{5} f(x) d x$?
(A) -21
(B) -13
(C) 0
(D) 13
(E) 21
__ 3. (2008BC-81) Let f and g be continuous functions for $a \leq x \leq b$. If $a<c<b, \int_{a}^{b} f(x) d x=P$,

$$
\begin{aligned}
& \quad \int_{c}^{b} f(x) d x=Q, \int_{a}^{b} g(x) d x=R \text {, and } \int_{c}^{b} g(x) d x=S \text {, then } \int_{a}^{c}(f(x)-g(x)) d x= \\
& \begin{array}{llll}
\text { (A) } P-Q+R-S & \text { (B) } P-Q-R+S & \text { (C) } P-Q-R-S & \text { (D) } P+Q-R-S
\end{array} \\
& \text { (E) } P+Q-R+S
\end{aligned}
$$

4. (2003-85) If a trapezoidal sum overapproximates $\int{0}^{4} f(x) d x$, which of the following could be the graph of $y=f(x)$?
(A)
(B)
(C)

(D)

(E)

?
\qquad 5. (2008BC-8) The function f is continuous on the closed interval $[2,13]$ and has values as shown in the table below. Using the intervals $[2,3],[3,5],[5,8]$, and $[8,13]$, what is the approximation of $\int_{2}^{13} f(x) d x$ obtained from a left Riemann sum?

x	2	3	5	8	13
$f(x)$	6	-2	-1	3	9

(A) 6
(B) 14
(C) 28
(D) 32
(E) 50
6. (1998-82) If $f(x)=g(x)+7$ for $3 \leq x \leq 5$, then $\int{3}^{5}[f(x)+g(x)] d x=$
(A) $2 \int_{3}^{5} g(x) d x+7$
(B) $2 \int_{3}^{5} g(x) d x+14$
(C) $2 \int_{3}^{5} g(x) d x+28$
(D) $\int_{3}^{5} g(x) d x+7$
(E) $\int_{3}^{5} g(x) d x+14$
\qquad 7. (2003BC-25) The function f is continuous on the closed interval $[2,14]$ and has values as show in the table below. Using three subintervals indicated by the data, what is the approximation of $\int_{2}^{14} f(x) d x$ found by using a right Riemann sum?

x	2	5	10	14
$f(x)$	12	28	34	30

(A) 296
(B) 312
(C) 343
(D) 374
(E) 390
\qquad 8. (1998-85) The function f is continuous on the closed interval $[2,8]$ and has values that are given in the table below. Using three subintervals indicated by the data, what is the trapezoidal approximation of $\int_{2}^{8} f(x) d x$?

x	2	5	7	8
$f(x)$	10	30	40	20

(A) 110
(B) 130
(C) 160
(D) 190
(E) 210
-_ 9. The most general antiderivative of $f(x)=(\sec x)\left(\frac{\cot x}{\sin x}\right)$ is
(A) $\sec x \tan x+C$
(B) $-\csc x \cot x+C$
(C) $-\cot x+C$
(D) $\cos x+C$
10. If $\int{-1}^{3} f(x) d x=2$ and $\int_{2}^{3} f(x) d x=-1$, find $\int_{-1}^{2}[2 f(x)] d x$
(A) 2
(B) -3
(C) 3
(D) -6
(E) 6
\qquad 11. The graph of a piecewise-linear function f, for $-1 \leq x \leq 4$, is shown below. What is the value of $\int_{-1}^{4} f(x) d x ?$

(A) 1
(B) 2.5
(C) 4
(D) 5.5
(E) 8

Short Answer: Evaluate the following indefinite integrals. Remember, rewriting is the key, and don't forget your $+C$.
Evaluate 4 of 6 of the following integrals (or get them all correct for amazing bonus points).
12. $\int e \csc x \tan ^{2} x d x$
13. $\int \frac{2}{5 \cdot 7^{-x}} d x$
14. $\int\left(\frac{4 x+3 \sqrt[3]{x}-x^{2}}{2 x}\right) d x$
15. $\int 2 \sqrt{x}(3 x-2)^{2} d x$
16. $\int\left(\frac{4}{\pi x}-\frac{2}{\sin ^{2} x}\right) d x$
17. $\int\left(\frac{e^{-x}-1}{e^{-x}}\right) d x$

