\qquad Date \qquad Period \qquad
AP Calculus Test 4.1-4.3, No calculator
Multiple Choice
\qquad 1. $\int \sec x \tan x d x=$ (A) $\sec x+C$
(B) $\tan x+C$
(C) $\frac{\sec ^{2} x}{2}+C$
(D) $\frac{\tan ^{2} x}{2}+C$
$\sec ^{2} x \tan ^{2} x+C$ Since $\frac{d}{d x}[\sec x]=\sec x \tan x$
$2 \quad \int \sec x \tan x d x=\sec x+c$
D
 $\int_{1}^{5} f(x) d x ?$
$=4+6$
(A) 2
(B) 6
(C) 8
(D) 10
(E) 12
$=10$
A
3. The graph of a function f is shown at right. What is the value of $\int_{0}^{7} f(x) d x ?=3+5-2=6$
(A) 6
(B) 8
(C) 10
(D) 14
(E) 18

Graph of f

c 2 x $) 0$						2	4	6
$f(x)$	4	k	8	12				

D
4. The function f is continuous on the closed interval $[0,6]$ and has the values given in the table above. The trapezoidal approximation for $\int^{6} f(x) d x$ found with 3 subintervals of equal length is 52 . What is the value of k ? $0 \int_{0}^{6} f(x) d x \approx T_{3}=\left(\frac{1}{2}\right)(2)[4+2 k+2(8)+12]=52$
(A) 2
(B) 6
(C) 7
(D) $\begin{aligned} 10^{2 K} & =20 \\ K & \text { (E) } 14 \\ K & =0\end{aligned}$
B
5. $\int\left(x^{3}+1\right)^{2} d x=$
(A) $\frac{1}{7} x^{7}+x+C$
(B) $\frac{1}{7} x^{7}+\frac{1}{2} x^{4}+x+C$
(C) $6 x^{2}\left(x^{3}+1\right)+C$
$\int\left(x^{6}+2 x^{3}+1\right) d x$
$\frac{1}{7} x^{7}+\frac{1}{2} x^{4}+x+c$
(D) $\frac{1}{3}\left(x^{3}+1\right)^{3}+C$
(E) $\frac{\left(x^{3}+1\right)^{3}}{9 x^{2}}+C$
6. $\int_{1}^{4}|x-3| d x=\frac{1}{2}(2)(2)+\frac{1}{2}(1)(1)(\mathrm{A})-\frac{3}{2}$
(B) $\frac{3}{2}$
(C) $\frac{5}{2}$
(D) $\frac{9}{2}$
(E) 5
7. The regions A, B, and C in the figure at right are bounded by the graph of the function f and the x axis. If the area of each region is 2 , what is the value of $\int_{-3}^{3}(f(x)+1) d x$?
(A) -2
(E) 7

$$
\begin{gathered}
\text { (B) } \int_{-3}^{3} f(x) d x+\int_{-3}^{3} 1 d x \\
(-2+2-2)+(1)(3-(-3)) \\
-2+6 \\
4
\end{gathered}
$$

8. The graph of the function f is shown below for $0 \leq x \leq 3$. Of the following, which has the least value?
(A) $\int_{1}^{3} f(x) d x$

(B) Left Riemann sum approximation of $\int_{1}^{3} f(x) d x$ with 4 subintervals of equal length
(C) Right Riemann sum approximation of $\int_{1}^{3} f(x) d x$ with 4 subintervals of equal length
(D) Midpoint Riemann sum approximation of $\int_{1}^{3} f(x) d x$ with 4 subintervals of equal length
(E) Trapezoidal sum approximation of $\int_{1}^{3} f(x) d x$ with 4 subintervals of equal length
B
9. If $\int_{-5}^{2} f(x) d x=-17$ and $\int_{5}^{2} f(x) d x=-4$, what is the value of $\int_{-5}^{5} f(x) d x$?
(A) -21
(B) -13
(C) 0
(D) 13
(E) 21

$$
\int_{-5}^{2} f(x) d x+\int_{-17}^{5} f(x) d x
$$

B
10. Let f and g be continuous functions for $a \leq x \leq b$. If $a<c<b, \int_{a}^{b} f(x) d x=P, \int_{c}^{b} f(x) d x=Q$, $\int_{a}^{b} g(x) d x=R$, and $\int_{c}^{b} g(x) d x=S$, then $\int_{a}^{c}(f(x)-g(x)) d x=$
(A) $P-Q+R-S$
(B) $P-Q-R+S$
(C) $P-Q-R-S$
(D) $P+Q-R-S$
(E) $P+Q-R+S$

$$
\begin{gathered}
\int_{a}^{b} f d x+\int_{b}^{c} f(x) d x-\int_{a}^{b} g(x) d x-\int_{b}^{c} g(x) d x \\
4-Q-(R)-(-s)^{c} \\
P-Q-R+S
\end{gathered}
$$

A
11. If a trapezoidal sum over-approximates $\int_{0}^{4} f(x) d x$, which of the following could be the graph of $y=f(x) ?$
(A)
(B)

(E)

B12. The function f is continuous on the closed interval $[2,13]$ and has values as shown in the table below. Using the intervals $[2,3],[3,5],[5,8]$, and $[8,13]$, what is the approximation of $\int_{2}^{13} f(x) d x$ obtained from Left Riemann sum? (2 2 3 S

x	2	3	5	8	13
$f(x)$	6	-2	-1	3	9

(A) 6
(B) 14
(C) 28
(D) 32
(E) 50

$$
\begin{aligned}
\int_{2}^{13} f(x) d x \approx L_{4} & =1(6)+2(-2)+3(-1)+5(3) \\
& =6-4-3+15 \\
& =14
\end{aligned}
$$

B 13. If $f(x)=g(x)+7$ for $3 \leq x \leq 5$, then $\int_{3}^{5}[f(x)+g(x)] d x=\int_{3}^{5}(g(x)+7+g(x)) d x=2 \int_{3}^{5} g(x) d x+\int_{3}^{5} 7 d x$
$\begin{array}{lllll}\text { (A) } 2 \int_{3}^{5} g(x) d x+7 & \text { (B) } 2 \int_{3}^{5} g(x) d x+14 & \text { (C) } 2 \int_{3}^{5} g(x) d x+28 & \text { (D) } \int_{3}^{5} g(x) d x+7 & \text { (E) } \int_{3}^{5} g(x) d x+14\end{array}$

D
14. The function f is continuous on the closed interval $[2,14]$ and has values as show in the table below. Using three subintervals indicated by the data, what is the approximation of $\int_{2}^{14} f(x) d x$ found by using a right Riemann sum?

| x | 2 | 5 | 10 | 14 | $\int_{2}^{14} f(x) d y \approx R_{3}$ |
| :---: | :---: | :---: | :---: | :---: | :---: |$=3(28)+5(34)+4(30)$

(A) 296
(B) 312
(C) 343
(D) 374
(E) $390=374$
C
15. The most general antiderivative of $f(x)=(\sec x)\left(\frac{\cot x}{\sin x}\right)$ is $\int(\sec x)\left(\frac{\cot +x}{\sin x}\right) d x=\int\left(\frac{1}{\cos x}\right)\left(\frac{\sin x}{\sin x}\right)\left(\frac{1}{\sin x}\right) d x=\int-\cot \csc ^{2} x d x$
(A) $\sec x \tan x+C$
(B) $-\csc x \cot x+C$
(C) $-\cot x+C$
(D) $\cos x+C$

E16. If $\int_{-1}^{3} f(x) d x=2$ and $\int_{2}^{3} f(x) d x=-1$, find $\int_{-1}^{2}[2 f(x)] d x=2 \int_{-1}^{2} f(x) d x=2\left[\int_{-1}^{3} f(x) d x+\int_{3}^{2} f(x) d x\right]$
(A) 2
(B) -3
(C) 3
(D) -6
(E) $6=2[2+1]$
$=2(3)$

$\int_{-1}^{4} f(x) d x=4-1.5=2.5$
B 17. The graph of a piecewise-linear function f, for $-1 \leq x \leq 4$, is shown above. What is the value of
$\int_{-1}^{4} f(x) d x ?$
(A) 1
(B) 2.5
(C) 4
(D) 5.5
(E) 8

A18. If f is continuous for all x, which of the following integrals necessarily have the same value?
I. $\int_{a}^{b} f(x) d x s \begin{gathered}\text { Basis } \\ \text { for } \\ \text { Compassion }\end{gathered}$
II. $\int_{a-a=0}^{b-r^{\text {left a }}} f(x+a) d x$
III. $\int_{a+c}^{b+c} f(x+c) d x$ wong directions
(A) I and II only
(B) I and III only
(C) II and III only
(D) I, II, and III
(E) None

Short Answer: Evaluate the following indefinite integrals. Remember, rewriting is the key, and don't forget your $+C$.
Evaluate 4 of 6 of the following integrals (or get them all correct for amazing bonus points).
12.

$$
\begin{aligned}
& \int e \csc x \tan ^{2} x d x \\
& e \int \frac{1}{\sin x}\left(\frac{\sin x}{\cos x}\right)\left(\frac{\sin x}{\cos x}\right) d x \\
& e \int\left(\frac{1}{\cos x} \cdot \frac{\sin x}{\tan x}\right) d x \\
& e \int \sec x \cdot \tan x d x \\
& e \cdot \sec x+c
\end{aligned}
$$

14. $\int\left(\frac{4 x+3 \sqrt[3]{x}-x^{2}}{2 x}\right) d x$

$$
\begin{aligned}
& \int\left(\frac{4 x}{2 x}+\frac{3 x^{1 / 3}}{2 x}-\frac{x^{2}}{2 x}\right) d x \\
& \int\left(2+\frac{3}{2} x^{-2 / 3}-\frac{1}{2} x\right) d x \\
& 2 x+\frac{9}{2} x^{1 / 3}-\frac{1}{4} x^{2}+c
\end{aligned}
$$

16. $\int\left(\frac{4}{\pi x}-\frac{2}{\sin ^{2} x}\right) d x$

$$
\begin{aligned}
& \int\left[\frac{4}{\pi}\left(\frac{1}{x}\right)-2 \csc ^{2} x\right] d x \\
& \frac{4}{\pi} \ln |x|+2 \cot x+C
\end{aligned}
$$

13. $\int \frac{2}{5 \cdot 7^{-x}} d x$
$\frac{2}{5} \int 7^{x} d x$
$\frac{2}{5} \cdot \frac{1}{\ln 7} \cdot 7^{x}+c$
correction
14. $\int 2 \sqrt{x}(3 x-2)^{2} d x$

$$
\begin{aligned}
& \int\left(2 x^{1 / 2}\left(9 x^{2}-12 x+4\right)\right) d x \\
& \int\left[18 x^{5 / 2}-24 x^{3 / 2}+8 x^{1 / 2}\right] d x \\
& \frac{36}{7} x^{7 / 2}-\frac{48}{5} x^{5 / 2}+\frac{16}{3} x^{3 / 2}+c
\end{aligned}
$$

17. $\int\left(\frac{e^{-x}-1}{e^{-x}}\right) d x$

$$
\begin{aligned}
& \int\left(\frac{e^{-x}}{e^{-x}}-\frac{1}{e^{-x}}\right) d x \\
& \int\left(1-e^{x}\right) d x \\
& x-e^{x}+C
\end{aligned}
$$

