\qquad Date \qquad Period \qquad
AP Calculus Test 4.1-4.3, No calculator

Multiple Choice

\qquad 1. $\int \sec x \tan x d x=$ (A) $\sec x+C$
(B) $\tan x+C$
(C) $\frac{\sec ^{2} x}{2}+C$
(D) $\frac{\tan ^{2} x}{2}+C$ $\frac{\sec ^{2} x \tan ^{2} x}{2}+C$
2. The function f is defined by $f(x)=\left\{\begin{array}{lr}2 & \text { for } x<3 \\ x-1 & \text { for } x \geq 3\end{array}\right.$. What is the value of $\int{1}^{5} f(x) d x$?
(A) 2
(B) 6
(C) 8
(D) 10
(E) 12
\qquad 3. The graph of a function f is shown at right. What is the value of $\int_{0}^{7} f(x) d x$?
(A) 6
(B) 8
(C) 10
(D) 14
(E) 18

Graph of f

x	0	2	4	6
$f(x)$	4	k	8	12

\qquad 4. The function f is continuous on the closed interval $[0,6]$ and has the values given in the table above. The trapezoidal approximation for $\int_{0}^{6} f(x) d x$ found with 3 subintervals of equal length is 52 . What is the value of k ?
(A) 2
(B) 6
(C) 7
(D) 10
(E) 14
5. $\int\left(x^{3}+1\right)^{2} d x=$
(A) $\frac{1}{7} x^{7}+x+C$
(B) $\frac{1}{7} x^{7}+\frac{1}{2} x^{4}+x+C$
(C) $6 x^{2}\left(x^{3}+1\right)+C$
(D) $\frac{1}{3}\left(x^{3}+1\right)^{3}+C$
(E) $\frac{\left(x^{3}+1\right)^{3}}{9 x^{2}}+C$
6. $\int_{1}^{4}|x-3| d x=$
(A) $-\frac{3}{2}$
(B) $\frac{3}{2}$
(C) $\frac{5}{2}$
(D) $\frac{9}{2}$
(E) 5
7. The regions A, B, and C in the figure at right are bounded by the graph of the function f and the x axis. If the area of each region is 2 , what is the value of $\int_{-3}^{3}(f(x)+1) d x$?
(A) -2
(B) -1
(C) 2
(D) 4
(E) 7

\qquad 8. The graph of the function f is shown below for $0 \leq x \leq 3$. Of the following, which has the least value?

(A) $\int_{1}^{3} f(x) d x$
(B) Left Riemann sum approximation of $\int_{1}^{3} f(x) d x$ with 4 subintervals of equal length
(C) Right Riemann sum approximation of $\int_{1}^{3} f(x) d x$ with 4 subintervals of equal length
(D) Midpoint Riemann sum approximation of $\int_{1}^{3} f(x) d x$ with 4 subintervals of equal length
(E) Trapezoidal sum approximation of $\int_{1}^{3} f(x) d x$ with 4 subintervals of equal length
\qquad 9. If $\int_{-5}^{2} f(x) d x=-17$ and $\int_{5}^{2} f(x) d x=-4$, what is the value of $\int_{-5}^{5} f(x) d x$?
(A) -21
(B) -13
(C) 0
(D) 13
(E) 21
10. Let f and g be continuous functions for $a \leq x \leq b$. If $a<c<b, \int_{a}^{b} f(x) d x=P, \int_{c}^{b} f(x) d x=Q$, $\int_{a}^{b} g(x) d x=R$, and $\int_{c}^{b} g(x) d x=S$, then $\int_{a}^{c}(f(x)-g(x)) d x=$
(A) $P-Q+R-S$
(B) $P-Q-R+S$
(C) $P-Q-R-S$
(D) $P+Q-R-S$
(E) $P+Q-R+S$
\qquad 11. If a trapezoidal sum over-approximates $\int_{0}^{4} f(x) d x$, which of the following could be the graph of $y=f(x) ?$
(A)

(D)
(B)

(E)

12. The function f is continuous on the closed interval $[2,13]$ and has values as shown in the table below. Using the intervals $[2,3],[3,5],[5,8]$, and $[8,13]$, what is the approximation of $\int_{2}^{13} f(x) d x$ obtained from a left Riemann sum?

x	2	3	5	8	13
$f(x)$	6	-2	-1	3	9

(A) 6
(B) 14
(C) 28
(D) 32
(E) 50
13. If $f(x)=g(x)+7$ for $3 \leq x \leq 5$, then $\int{3}^{5}[f(x)+g(x)] d x=$
(A) $2 \int_{3}^{5} g(x) d x+7$
(B) $2 \int_{3}^{5} g(x) d x+14$
(C) $2 \int_{3}^{5} g(x) d x+28$
(D) $\int_{3}^{5} g(x) d x+7$
(E) $\int_{3}^{5} g(x) d x+14$
\qquad 14. The function f is continuous on the closed interval $[2,14]$ and has values as show in the table below. Using three subintervals indicated by the data, what is the approximation of $\int_{2}^{14} f(x) d x$ found by using a right Riemann sum?

x	2	5	10	14
$f(x)$	12	28	34	30

(A) 296
(B) 312
(C) 343
(D) 374
(E) 390
\qquad 15. The most general antiderivative of $f(x)=(\sec x)\left(\frac{\cot x}{\sin x}\right)$ is
(A) $\sec x \tan x+C$
(B) $-\csc x \cot x+C$
(C) $-\cot x+C$
(D) $\cos x+C$
\qquad 16. If $\int_{-1}^{3} f(x) d x=2$ and $\int_{2}^{3} f(x) d x=-1$, find $\int_{-1}^{2}[2 f(x)] d x$
(A) 2
(B) -3
(C) 3
(D) -6
(E) 6

\qquad 17. The graph of a piecewise-linear function f, for $-1 \leq x \leq 4$, is shown above. What is the value of $\int_{-1}^{4} f(x) d x ?$
(A) 1
(B) 2.5
(C) 4
(D) 5.5
(E) 8
\qquad 18. If f is continuous for all x, which of the following integrals necessarily have the same value?
I. $\int_{a}^{b} f(x) d x$
II. $\int_{0}^{b-a} f(x+a) d x$
III. $\int_{a+c}^{b+c} f(x+c) d x$
(A) I and II only
(B) I and III only
(C) II and III only
(D) I, II, and III
(E) None

Short Answer: Evaluate the following indefinite integrals. Remember, rewriting is the key, and don't forget your $+C$.
Evaluate 4 of 6 of the following integrals (or get them all correct for amazing bonus points).
12. $\int e \csc x \tan ^{2} x d x$
13. $\int \frac{2}{5 \cdot 7^{-x}} d x$
14. $\int\left(\frac{4 x+3 \sqrt[3]{x}-x^{2}}{2 x}\right) d x$
15. $\int 2 \sqrt{x}(3 x-2)^{2} d x$
16. $\int\left(\frac{4}{\pi x}-\frac{2}{\sin ^{2} x}\right) d x$
17. $\int\left(\frac{e^{-x}-1}{e^{-x}}\right) d x$

