\qquad Date \qquad Per \qquad

TEST: 4.1-4.3, Calculator Permitted
Part I: short answer: You know what to do (show all work and set-ups).

1. If $f^{\prime}(x)=\frac{2}{x}$ and $f(\sqrt{e})=5$, then $f(e)=$

$$
\text { 2. } \int\left(x^{3}+1\right)^{2} d x=
$$

3. If $g(x)=x^{2}-3 x+4$ and $f(x)=g^{\prime}(x)$, then $\int_{1}^{3} f(x) d x=$
4. If f is the function given by $f(x)=\int{4}^{2 x} \sqrt{t^{2}-t} d t$, then $f^{\prime}(2)=$
4. If $\int_{0}^{3} f(x) d x=6$ and $\int_{3}^{5} f(x) d x=4$, then $\int_{0}^{5}(3+2 f(x)) d x=$
\qquad 6. A left Rieman sum, a right Riemann sum, and a trapezoidal sum are used to approximate the value of $\int_{0}^{1} f(x) d x$, each using the same number of subintervals. The graph of the function f is shown at right. Which of the sums give an underestimate of the value of $\int_{0}^{1} f(x) d x$?

I. Left Sum II. Right Sum III. Trapezoidal sum

(List all that apply, and show graphical evidence.)
\qquad 7. The rate at which water is sprayed on a field of vegetables if given by $R(t)=2 \sqrt{1+5 t^{3}}$, where t is in minutes and $R(t)$ is in gallons per minute. During the time interval $0 \leq t \leq 4$, what is the average rate of water flow, in gallons per minute?
(A) 8.458
(B) 13.395
(C) 14.691
(D) 18.916
(E) 35.833

- 8. $\int \frac{1}{x^{2}} d x=$
(A) $\ln x^{2}+C$
(B) $-\ln x^{2}+C$
(C) $x^{-1}+C$
(D) $-x^{-1}+C$
(E) $-2 x^{3}+C$
\qquad 9. The graph fo the piecewise linear function f is shown in the figure at right. If $g(x)=\int_{-2}^{x} f(t) d t$, which of the folliwng values is greatest?
(A) $g(-3)$
(B) $g(-2)$
(C) $g(0)$
(D) $g(1)$
(E) $g(2)$

10. The graph of the function f shown has horizontal tangents at $x=2$ and $x=5$. Let g be the funtion defined by $g(x)=\int_{0}^{x} f(t) d t$. For what values of x does the graph of g have a point of inflection?
(A) 2 only
(B) 4 only
(C) 2 and 5 only
(D) 2, 4, and 5
(E) 0,4 , and 6

x	-4	-3	-2	-1
$f(x)$	0.75	-1.5	-2.25	-1.5
$f^{\prime}(x)$	-3	-1.5	0	1.5

\qquad 11. The table above gives values of a function f and its derivative at selected values of x. If f^{\prime} is continuous on the interval $[-4,-1]$, what is the value of $\int_{-4}^{-1} f^{\prime}(x) d x$?
(A) -4.5
(B) -2.25
(C) 0
(D) 2.25
(E) 4.5

Part II: Free Response: Respond Freely, bearing in mind 3 things: Notation, Notation, and (there was one more . . .)

Graph of f
12. Let f be the function given by $f(x)=(\ln x)(\sin x)$. The figure above shows the graph of f for $0<x \leq 2 \pi$. The function g is defined by $g(x)=\int_{1}^{x} f(t) d t$ for $0<x \leq 2 \pi$.
(a) Find $g(1)$ and $g^{\prime}(1)$.
(b) On what intervals, if any, is g increasing? Justify your answer.
(c) For $0<x \leq 2 \pi$, find the value of x at which g has an absolute minimum. Justify your answer.
(d) For $0<x \leq 2 \pi$, is there a value of x at which the graph of g is tangent to the x-axis? Explain why or why not.

