\qquad Date \qquad
\qquad
AP Calculus TEST 4.1-5.1, No Calculator
Section 1: Multiple Choice-You know what to do
$\underbrace{}_{1}$

1. $\int\left(x^{2}-2\right)^{2} d x=\quad \int\left(x^{2}-2\right)^{2} d x$
(A) $\begin{array}{ll}\left(\frac{x^{3}}{3}-2 x\right)^{2}+C \quad & \int\left(x^{4}-4 x^{2}+4\right) d x \\ & \frac{1}{5} x^{5}-\frac{4}{3} x^{3}+4 x+C\end{array}$
(B) $\frac{\left(x^{2}-2\right)^{3}}{6 x}+C$
(C) $\frac{x^{5}}{5}-\frac{4 x^{3}}{3}+4 x+C$
(D) $\frac{2 x}{3}\left(x^{2}-2\right)^{3}+C$
(E) $\left(\frac{x^{2}-2}{3}\right)^{3}+C$

B 2. At each point (x, y) on a curve, $\frac{d^{2} y}{d x^{2}}=6 x$. Additionally, the line $y=6 x+4$ is tangent to the curve at $x=-2$. Which of the following is an equation of the curve that satisfies these conditions?
(A) $y=6 x^{2}-32$
(B) $y=x^{3}-6 x-12$
$\frac{d^{2} y}{d x^{2}}=6 x \quad\left\{\begin{array}{l}\frac{d y}{d x}=3 x^{2}-6 \\ y=x^{3}-6 x+c\end{array}\right.$
$\begin{aligned} e x=-2: y & =6 x+4 \\ y^{\prime} & =6\end{aligned}$
(C) $y=2 x^{3}-3 x$
(D) $y=x^{3}-6 x+12$
$\frac{d y}{d x}=3 x^{2}+C$
So, $y^{\prime}(-2)=6$
$y(-2)=6(-2)+4$
(E) $y=2 x^{3}+3 x-12 \quad$ for $(-2)=6: \begin{aligned} & 6=3(-2)^{2}+c \\ & y^{\prime}(-12+c\end{aligned}$ $c=-6$
$c=3 x^{2}-6$
(A) $-2 \cos x+C$
(B) $2 \cos x+C$
(C) $-\cos 2 x+C$
(D) $\cos x+C$
(E) $\cos 2 x+C$
$\int \frac{\sin 2 x}{\cos x} d x$
$\int \frac{2 \sin x \cos x}{\cos x} d x$
D
4. $\int \tan ^{2} x d x=$
(A) $\tan x+x+C$
(B) $\sec x+x+C$
(C) $\sec x-x+C$
(D) $\tan x-x+C$
(E) $\tan x+C$
$\int \tan ^{2} x d x$
$\int\left(\sec ^{2} x-1\right) d x$

$$
\tan x-x+c
$$

$$
2 \int x_{3 x^{2}}^{2} \frac{\left(x^{3}+3\right)^{-1 / 2}}{x} d x
$$

C 5. $\int \frac{2 x^{2}}{\sqrt{x^{3}+3}} d x=$
$3 x^{2}$
$(2)\left(\frac{1}{3}\right)(2)\left(x^{3}+3\right)^{1 / 2}+c$
$\frac{4}{3} \sqrt{x^{3}+3}+c$
(A) $\frac{2}{3} \sqrt{x^{3}+3}+C$
(B) $\frac{4}{3 \sqrt{x^{2}+3}}+C$
(C) $\frac{4}{3} \sqrt{x^{3}+3}+C$
(D) $\frac{1}{3} \sqrt{x^{3}+3}+C$
(E) $\frac{3}{4} \sqrt{x^{3}+3}+C$

A 6. $\int x \sqrt{x-1} d x=$

$$
\begin{aligned}
& u=x-1 \\
& x=u+1 \\
& d x=d u
\end{aligned}
$$

(A) $\frac{2}{5}(x-1)^{5 / 2}+\frac{2}{3}(x-1)^{3 / 2}+C$
(B) $\frac{1}{2}(x-1)^{4}+C$

$$
\int(u+1) u^{1 / 2} d u
$$

(C) $\frac{5}{2}(x-1)^{5 / 2}+\frac{3}{2}(x-1)^{3 / 2}+C$ $\int\left(u^{3 / 2}+u^{1 / 2}\right) d u$
$\frac{2}{5} u^{5 / 2}+\frac{2}{3} u^{3 / 2}+c$
(D) $\frac{1}{3} x^{2}(x-1)^{3 / 2}+C$
$\frac{2}{5}(x-1)^{5 / 2}+\frac{2}{3}(x-1)^{3 / 2}+C$
(E) $\frac{2}{3}\left(x^{2}-x\right)^{3 / 2}+C$

B
7. $\int \tan ^{3} x \cdot \sec ^{2} x d x=$
(A) $\frac{1}{2} \tan ^{2} x+C$
(B) $\frac{1}{4} \tan ^{4} x+C$
(C) $\frac{1}{2} \sec ^{2} x+C$
(D) $\frac{\sec ^{3} x \cdot \tan ^{4} x}{12}+C$
(E) $4 \tan ^{4} x+C$

$$
\int \frac{\left(\frac{1}{4} \tan ^{4} x+c\right.}{\left(\frac{\tan x)^{3} \sec ^{2} x}{4} d x\right.}
$$

D
8. What is the average value of $\cos x$ on the closed interval $\left[0, \frac{\pi}{2}\right]$?
(A) $\frac{1}{2}$
(B) $\frac{\pi}{4}$
(C) $\frac{1}{2 \pi}$
(D) $\frac{2}{\pi}$
(E) $\frac{\pi}{2}$

$$
\begin{aligned}
\text { Aug valve } \left.=\frac{\int_{0}^{\pi / 2} \cos x d x}{\pi / 2-0}=\frac{2}{\pi}(\sin x]_{0}^{\pi / 2}\right) & =\frac{2}{\pi}\left[\sin \frac{\pi}{2}-\sin 0\right] \\
& =\frac{2}{\pi}[1-0] \\
& =\frac{2}{\pi}
\end{aligned}
$$

D
9. $\frac{d}{d x}\left[\int_{2 x}^{x^{2}} \cos ^{2} t d t\right]=\cos ^{2}\left(x^{2}\right) \cdot 2 x-\cos ^{2}\left(\frac{2 x)}{\tau} ; 2\right.$
(A) $2 x\left[\cos ^{2}\left(x^{2}\right)-\cos ^{2}(2 x)\right] \quad Z\left[x \cos ^{2}\left(x^{2}\right)-\cos ^{2}(2 x)\right]$
(B) $\cos ^{2}\left(x^{2}\right)$
(C) $2 x^{2} \cos ^{2}\left(x^{2}\right)$
(D) $2\left[x \cos ^{2}\left(x^{2}\right)-\cos ^{2}(2 x)\right]$
(E) $\cos ^{2}\left(x^{2}\right)-\cos ^{2}(2 x)$

Part II: Free Response—Do and show all work in the space provided. Have fun!
10.

At time $t=0$, a boiled potato is take from a pot on a stove and left to cool in a kitchen. The internal temperature of the potato is 91 degrees Celsius $\left({ }^{\circ} \mathrm{C}\right)$ at time $t=0$, and the internal temperature of the potato is greater than $27^{\circ} \mathrm{C}$ for all times $t>0$. The internal temperature of the potato at time t minutes can be modeled by the function H that satisfies the differential equation $\frac{d H}{d t}=-\frac{1}{4}(H-27)$, where $H(t)$ is measured in degrees Celsius and $H(0)=91$.
(a) Write an equation for the line tangent to the graph of H at $t=0$. Use this equation to approximate the internal temperature of the potato at time $t=3$.

$$
\begin{aligned}
& \text { pt: }(0,91)^{2} \\
& \text { Slope }=\left.\frac{d H}{d t}\right|_{(0,91)}=-\frac{1}{4}(91-27) \\
&=-\frac{1}{4}(64) \\
&=-16(\sqrt{1}
\end{aligned}
$$

$$
\text { So, } \begin{aligned}
H(3) \approx \mathcal{L}(3) & =91-16(3) \\
& =91-48 \\
& =\underbrace{43^{\circ} \mathrm{C}}_{(3)}
\end{aligned}
$$

So $y=\underbrace{\mathcal{L}(x)=91-16(x-0)}_{(\sqrt{2})}$
(b) Use $\frac{d^{2} H}{d t^{2}}$ to determine whether your answer in part (a) is an underestimate or an overestimate of the internal temperature of the potato at time $t=3$.

$$
\begin{aligned}
\frac{d H}{d t} & =-\frac{1}{4}(H-27) \\
\frac{d}{d t}: \frac{d^{2} H}{d t^{2}} & =-\frac{1}{4}\left(\frac{d H}{d t}\right) \\
& =-\frac{1}{4}\left(-\frac{1}{4}(H-27)\right) \\
& =\frac{1}{16}(H-27) \\
\left.\frac{d^{2} H}{d t^{2}}\right|_{(0,91)} & =\frac{1}{16}(91-27) \\
& =\frac{64}{16}
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{69}{16} \\
& =470+\sqrt{4} \quad \begin{array}{l}
\text { Answer } \\
\text { with reason }
\end{array}
\end{aligned}
$$

So, $\mathscr{L}(3)$ underapproximates $H(3)$
(c) For $t<10$, an alternate model for the internal temperature of the potato at time t minutes is the function G that satisfies the differential equation $\frac{d G}{d t}=-(G-27)^{2 / 3}$, where $G(t)$ is measured in degrees Celsius and $G(0)=91$. Find an expression for $G(t)$. Based on this model, what is the internal temperature of the potato at time $t=3$?

$$
\begin{aligned}
& \frac{d G}{d t}=-(G-27)^{2 / 3} \\
& (G-27)^{-2 / 3} d G=-d t \\
& \int(G-27)^{-2 / 3} d G=\int(-1) d t \\
& 3(G-277)^{1 / 3}=-t+c \\
& (G-27)^{1}=-\frac{1}{3} t+c \\
& G-27=\left(-\frac{1}{3}+C+\right)^{3} \\
& G(t)=\left(-\frac{1}{3} t+c\right)^{3}+27
\end{aligned}
$$

$$
\begin{aligned}
\text { for } G(0)=91: 91 & =(0+C)^{3}+27 \\
64 & =C^{3} \\
c & =\sqrt[3]{64} \\
c & =4 \\
\text { so, } G(t) & =\left(-\frac{1}{3} t+4\right)^{3}+27 \\
G(3)= & \left(-\frac{1}{3}(3)+4\right)^{3}+27^{\circ} \mathrm{C} \\
= & (-1+4)^{3}+27{ }^{\circ} \mathrm{C} \\
= & 27+27{ }^{\circ} \mathrm{C} \\
= & 54^{\circ} \mathrm{C} \mathrm{C} 9
\end{aligned}
$$

