Take Home TEST: 6.4-7.1 All integration techniques and Differential Equations NO CALCULATOR PERMITTED

Part I: Multiple Choice:

1. (no work needed) Shown at right is a slope field for which of the following differential equations?
(A) $\frac{d y}{d x}=1+x$
(B) $\frac{d y}{d x}=x^{2}$
(C) $\frac{d y}{d x}=x+y$

$$
\begin{equation*}
\frac{d y}{d x}=\frac{x}{y} \quad \text { (E) } \frac{d y}{d x}=\ln y \tag{D}
\end{equation*}
$$

2. (no work needed) Which of the following could be the slope field for the differential equation

$$
\frac{d y}{d x}=y^{2}-1 ?
$$

(A)

(D)

(B)

(E)

Part II: Short Answer-Evaluate the following indefinite integrals. Simplify your coefficients! Don't forget $+C$. Do all work in the space provided below each problem.
3. $\int \frac{9}{\sqrt{25-4 x^{2}}} d x=$
(9)($\left.\frac{1}{2}\right) \arcsin \left(\frac{2 x}{5}\right)+C$

$$
\frac{9}{2} \arcsin \left(\frac{2}{5} x\right)+C
$$

6. $\int 5 \sec ^{2} x \cdot e^{\tan x} d x=$ $5 e^{\tan y}+c$
7. $\int 7 x \csc \left(2 x^{2}\right) d x=$
$-(7)\left(\frac{1}{4}\right) \ln \left|\csc \left(2 x^{2}\right)+\cot \left(2 x^{2}\right)\right|+c$

$$
-\frac{7}{4} \ln \left|\csc \left(2 x^{2}\right)+\cot \left(2 x^{2}\right)\right|+c
$$

4. $\int \frac{9 x}{\sqrt{25-4 x}} d x=$

$$
\left.\begin{array}{l}
u=25-4 x \\
d u=-4 d x \\
d x=-\frac{1}{4} d u
\end{array}\right\}\left(-\frac{1}{4}\right) g\left(\frac{1}{4}\right) \int(25-u)\left(u^{-1 / 2}\right) d u
$$

$$
\begin{aligned}
& d x=-\frac{1}{4} d u \\
& \left.x=\frac{1}{4}(25-u)\right) \frac{-9}{16} \int\left[25 u^{-1 / 2}-u^{1 / 2}\right] d u \\
& 1 / 2
\end{aligned}
$$

$$
=-\frac{9}{16}\left[25(2)(25-1 x)^{1 / 2}-\left(\frac{2}{3}\right)(25-1)^{3 / 2}\right]^{3 / 2}+C
$$

$$
=-\frac{9}{16}\left[50(25-4 x)^{1 / 2}-\frac{2}{3}(25-4 x)^{3 / 2}\right]+C
$$

$$
=\frac{-450}{16}(25-4 x)^{1 / 2}+\frac{18}{48}(25-4 x)^{3 / 2}+c
$$

$$
\begin{aligned}
& =-\frac{225}{8}(25-4 x)^{1 / 2}+\frac{3}{8}(25-4 x)^{3 / 2}+c \\
& =-28.125 \sqrt{25-4 x}+0.375 \sqrt{25-4 x)^{3}}+c
\end{aligned}
$$

7. $\int 2 x^{2}\left(2 x^{3}+5\right)^{4} d x=$

$$
\begin{aligned}
& (2)\left(\frac{1}{6}\right)\left(\frac{1}{5}\right)\left(2 x^{3}+5\right)^{5}+C \\
& \frac{2}{30}\left(2 x^{3}+5\right)^{5}+C \\
& \frac{1}{15}\left(2 x^{3}+5\right)^{5}+C
\end{aligned}
$$

10. $\int \frac{4}{x^{2}-14 x+49} d x=$
11. $\int \frac{x-7}{x^{2}-14 x+48} d x=$ $4 \int \frac{1}{(x-7)^{2}} d x$ $4 \int(x-7)^{-2} d x$

$$
\begin{gathered}
(4)(-1)(x-7)^{-1}+c \\
\frac{-4}{x-7}+c
\end{gathered}
$$

Read and Sign to acknowledge the following statement:
I completed this test on my own without any help from others. I am an honest and upright student with impeccable integrity who eschews academic dishonesty, chicanery, corruption, perfidiousness, double-dealing fraudulence, and cunning improbity. I also LOVE math!

Your Signature

