\qquad
\qquad
Take Home TEST: 4.4 - 5.1 All integration techniques and Differential Equations NO CALCULATOR PERMITTED

Part I: Multiple Choice:

\qquad 1. (no work needed) Shown at right is a slope field for which of the following differential equations?
(A) $\frac{d y}{d x}=1+x$
(B) $\frac{d y}{d x}=x^{2}$
(C) $\frac{d y}{d x}=x+y$
(D) $\frac{d y}{d x}=\frac{x}{y}$
(E) $\frac{d y}{d x}=\ln y$

2. (no work needed) Which of the following could be the slope field for the differential equation

$$
\frac{d y}{d x}=y^{2}-1 ?
$$

(A)

(D)

(B)

(E)

Part II: Short Answer-Evaluate the following indefinite integrals. Simplify your coefficients! Don't forget $+C$. Do all work in the space provided below each problem.
3. $\int \frac{9}{\sqrt{25-4 x^{2}}} d x=$
4. $\int \frac{9 x}{\sqrt{25-4 x}} d x=$
5. $\int \frac{9 x}{\sqrt{25-4 x^{2}}} d x=$
6. $\int 5 \sec ^{2} x \cdot e^{\tan x} d x=$
7. $\int 2 x^{2}\left(2 x^{3}+5\right)^{4} d x=$
8. $\int \frac{4}{x \sqrt{(\ln x)^{5}}} d x=$
9. $\int 7 x \csc \left(2 x^{2}\right) d x=$
10. $\int \frac{4}{x^{2}-14 x+49} d x=$
11. $\int \frac{x-7}{x^{2}-14 x+48} d x=$

