\qquad
\qquad
\qquad
Calculus TEST: 6.4 to 8.1. NO Calculator permitted
Part I: Multiple Choice: Put the correct CAPITAL letter (yes I was shouting) in the blank to the left of the question number.
\qquad 1. If $\frac{d y}{d x}=y \sec ^{2} x$ and $y=5$ when $x=0$, then $y=$
(A) $e^{\tan x}+4$
(B) $e^{\tan x}+5$
(C) $5 e^{\tan x}$
(D) $\tan x+5$
(E) $\tan x+5 e^{x}$
\qquad 2. Bacteria in a certain culture increase at a rate proportional to the number present. If the number of bacteria doubles in three hours, in how many hours will the number of bacteria triple?
(A) $\frac{3 \ln 3}{\ln 2}$
(B) $\frac{2 \ln 3}{\ln 2}$
(C) $\frac{\ln 3}{\ln 2}$
(D) $\ln \left(\frac{27}{2}\right)$
(E) $\ln \left(\frac{9}{2}\right)$
\qquad 3. If $\frac{d y}{d t}=k y$ and k is a nonzero constant, then y could be
(A) $2 e^{k t y}$
(B) $2 e^{k t}$
(C) $e^{k t}+3$
(D) $k t y+5$
(E) $\frac{1}{2} k y^{2}+\frac{1}{2}$
\qquad 4. Shown at right is a slope field for which of the following differential equations?
(A) $\frac{d y}{d x}=1+x$
(B) $\frac{d y}{d x}=x^{2}$
(C) $\frac{d y}{d x}=x+y$
(D) $\frac{d y}{d x}=\frac{x}{y}$
(E) $\frac{d y}{d x}=\ln y$

5. $\int{0}^{\sqrt{3}} \frac{d x}{\sqrt{4-x^{2}}}=$
(A) $\frac{\pi}{3}$
(B) $\frac{\pi}{4}$
(C) $\frac{\pi}{6}$
(D) $\frac{1}{2} \ln 2$
(E) $-\ln 2$
6. $\int_{0}^{8} \frac{d x}{\sqrt{1+x}}=$
(A) 1
(B) $\frac{3}{2}$
(C) 2
(D) 4
(E) 6
7. A kangaroo moves in a straigt line so that its velocity at time $t \geq 0$ on a horizontal line is $t-t^{2}$. What is the total distance covered by the kangaroo between $t=0$ and $t=2$?
(A) 1
(B) $\frac{4}{3}$
(C) $\frac{5}{3}$
(D) 2
(E) 5
\qquad 8. A particle moves along the x-axis with velocity given by $v(t)=3 t^{2}+6 t$ for time $t \geq 0$. If the particle is at position $x=2$ at time $t=0$, what is the position of the particle at $t=1$?
(A) 4
(B) 6
(C) 9
(D) 11
(E) 12
\qquad 9. The data for the acceleration $a(t)$ of a car from 0 to 6 seconds are given in the table at right. If the velocity at $t=0$ is 11 feet per second, the approximate value of the velocity at $t=6$, computed using a left-hand Riemann sum

$t(\mathrm{sec})$	0	2	4	6
$a(t)\left(\mathrm{ft} / \mathrm{sec}^{2}\right)$	5	2	8	3

(A) $26 \mathrm{ft} / \mathrm{sec}$
(B) $30 \mathrm{ft} / \mathrm{sec}$
(C) $37 \mathrm{ft} / \mathrm{sec}$
(D) $39 \mathrm{ft} / \mathrm{sec}$
(E) $41 \mathrm{ft} / \mathrm{sec}$
\qquad 10. Let $F(x)$ be an antiderivative of $\sin x \cos ^{2} x$. If $F\left(\frac{\pi}{2}\right)=0$, then $F(0)=$
(A) -1
(B) $-\frac{1}{3}$
(C) 0
(D) $\frac{1}{3}$
(E) 1
\qquad 11. What is the average value of $y=x^{2} \sqrt{x^{3}+1}$ on the interval [0,2]?
(A) $\frac{26}{9}$
(B) $\frac{52}{9}$
(C) $\frac{26}{3}$
(d) $\frac{52}{3}$
(E) 24
12. $\int{-2}^{2}\left(x^{7}+k\right) d x=16$, then $k=$
(A) -12
(B) -4
(C) 0
(D) 4
(E) 12

Part II: Free Response: Show all work below the problem in the space provided. Round to 3 decimals when applicable and include units when applicable, and wear galoshes when applicable.
13. (2005-BC4) Consider the differential equation $\frac{d y}{d x}=2 x-y$
(a) On the axes provided, sketch a slope field for the given differential equation at the twelve points indicated, and sketch the solution curve that passes through the point $(0,1)$.

(b) The solution curve that passes through the point $(0,1)$ has a local minimum at $x=\ln \left(\frac{3}{2}\right)$. What is the y-coordinate of this local minimum?
(c) Let $y=f(x)$ be the particular solution to the given differential equation with the initial condition $f(0)=1$. Use a tangent line approximation centered at $x=0$ to approximate $f(-0.4)$. Show the work that leads to your answer.
(d) Find $\frac{d^{2} y}{d x^{2}}$ in terms of x and y. Determine whether the approximation found in part (c) is less than or greater than $f(-0.4)$. Explain your reasoning.

