\qquad Date \qquad Alchemy Secret \qquad
BC Calculus: TEST 5.1-6.1, NO CALCULATOR
Part I: Multiple Choice -Show all work on scratch paper and attach to the back.
E 1. If $G(x)$ is an antiderivative for $f(x)$ and $G(2)=-7$, then $G(4)=$
(A) $f^{\prime}(4)$
(B) $-7+f^{\prime}(4)$
(C) $\int_{2}^{4} f(t) d t$
$\begin{aligned} & \text { (D) } \int_{\substack{\prime}}^{4}(-7+f(t)) d t \quad(\mathrm{E})-7+\int_{2}^{4} f(t) d t \\ & \begin{array}{c}G^{\prime}=f d x=G \quad G(4)\end{array} \\ &=G(2)+\int_{2}^{4} f(x) d x \\ &=-7+\int_{2}^{4} f(x) d x\end{aligned}$
2. $\int x \sin (6 x) d x=$
(A) $-x \cos (6 x)+\sin (6 x)+C$
(B) $-\frac{x}{6} \cos (6 x)+\frac{1}{36} \sin (6 x)+C$
(C) $-\frac{x}{6} \cos (6 x)+\frac{1}{6} \sin (6 x)+C$
(D) $\frac{x}{6} \cos (6 x)+\frac{1}{36} \sin (6 x)+C$
(E) $6 x \cos (6 x)-\sin (6 x)+C^{d}$
3. Given that $y(1)=-3$ and $\frac{d y}{d x}=2 x+y$, what is the approximation for $y(2)$ if Euler's method is used with a step size of 0.5 , starting at $x=1$?
(A) -5
(B) -4.25
(C) -4
(D) -3.75

(E) -3.5 | (| y | m | $m a x$ | $y_{n e w}$ |
| :---: | :---: | :---: | :---: | :---: |
| | 1 | -3 | -1 | -0.5 |
| 1.5 | -3.5 | -0.5 | | |
| 2 | -3.75 | -.25 | -3.75 | |
| so $y(z)$ | ≈-3.75 | | | |

4. If $\int x^{2} \cos x d x=f(x)-\int 2 x \sin x d x$, then $f(x)=$
(A) $2 \sin x+2 x \cos x+C$
(B) $x^{2} \sin x+C$
(C) $2 x \cos x-x^{2} \sin x+C$
(D) $4 \cos x-2 x \sin x+C$
(E) $\left(2-x^{2}\right) \cos x-4 \sin x+C \begin{aligned} & u=x^{2} \\ & d u=2 x d x\end{aligned} \underbrace{d x}_{\substack{d v=\cos x \\ v=\sin x}}$
$\int x^{2} \cos x d x=\bar{x}^{2} \sin x-\int 2 x \sin x d x$

D 5. If the graph of $y=f(x)$ contains the point $(0,2), \frac{d y}{d x}=\frac{-x}{y e^{x^{2}}}$ and $f(x)>0$ for all x, then $f(x)=$
(A) $3+e^{-x^{2}}$
(B) $\sqrt{3}+e^{-x}$
(C) $1+e^{-x}$
(D) $\sqrt{3+e^{-x^{2}}}$
(E) $\sqrt{3+e^{x^{2}}}$

A 6. Population y grows according to the equation $\frac{d y}{d t}=k y$, where k is a constant and t is measured in years. If the population doubles every 10 years, then the value of k is
(A) $\ln \sqrt[10]{2}$
(B) $\frac{1}{5}$
(C) $\ln \sqrt{10}$
(D) $2 \ln 10$
(E) 5
$\ln 2=10 k$
$k=1 \operatorname{lin}_{2}, \ln \cdot \ln 92$
2 $k=0,000314$
\qquad
e (10,2): $z=e^{10 k}$

B7. $\int \frac{x^{2}}{3+4 x+x^{2}} d x=\int \frac{x^{2}}{x^{2}+4 x+3} d x$
(A) $1+\frac{9}{2} \ln |x+3|-\frac{1}{2} \ln |x+1|+C$
(B) $x-\frac{9}{2} \ln |x+3|+\frac{1}{2} \ln |x+1|+C$
(C) $x+\frac{9}{2} \ln |x+3|-\frac{1}{2} \ln |x+1|+C$
(D) $x-\frac{9}{2} \ln |x+3|-\frac{1}{2} \ln |x+1|+C$
(E) $1+\frac{9}{2} \ln |x+3|+\frac{1}{2} \ln |x+1|+C$
$\int\left[1+\frac{-4 x-3}{(x+1)(x+3)}\right] d x$
$x^{2}+4 x+3 \frac{1}{x^{2}}$
$\int\left[1+\frac{1 / 2}{x+1}+\frac{9-2}{x+3}\right) d x$
$x+\frac{1}{2} \ln |x+1|-\frac{3}{2} \ln |x+3|+c$$\quad \frac{x^{2}+4 x+3 \mid x^{2}}{\frac{-x^{2}+4 x \mp 3}{-4 x-3}}$
8. Show below is a slope field for which of the following differential equations?

zero slopes when $x=0$ (y-axis)
pos slopes when $x>0$
neg slopes when $X<0$ (x must have odd exponent (y must have even exponent)
(A) $\frac{d y}{d x}=\frac{x}{y}$
(B) $\frac{d y}{d x}=\frac{x^{2}}{y^{2}}$
(C) $\frac{d y}{d x}=\frac{x^{3}}{y}$
(D) $\frac{d y}{d x}=\frac{x^{2}}{y}$
(E) $\frac{d y}{d x}=\frac{x^{3}}{y^{2}}$

A 9. Which of the following could be the slope field for the differential equation $\frac{d y}{d x}=y^{2}-1$?
(A)

(D)

(B)

(E)

(C)

$E_{\text {10. }} \frac{d}{d x}\left(\int_{0}^{x^{2}} \sin \left(t^{3}\right) d t\right)=\sin \left(x^{2}\right)^{3} \cdot 2 x-\sin \left(0^{3}\right) \cdot 0=2 x \sin \left(x^{6}\right)$
(A) $-\cos \left(x^{6}\right)$
(B) $\sin \left(x^{3}\right)$
(C) $\sin \left(x^{6}\right)$
(D) $2 x \sin \left(x^{3}\right)$
(E) $2 x \sin \left(x^{6}\right)$

Part II: Free Response-Show all work in the space provided

t (minutes)	0	1	2	3	4	5	6
$C(t)$ (ounces)	0	5.3	8.8	11.2	12.8	13.8	14.5

11. Hot water is dripping through a coffeemaker, filling a large cup with coffee. The amount of coffee in the cup at time $t, 0 \leq t \leq 6$, is given by a differentiable function C, where t I smeasured in minutes. Selected values of $C(t)$, measured in ounces, are given in the table above.
(a) Use the data in the table to estimate $C^{\prime}(3.5)$. Show the computations that lead to your answer. Using correct units, interpret the meaning of your answer in the context of this problem.
(b) Is there a time $t, 2 \leq t \leq 4$, at which $C^{\prime}(t)=2$? Justify your answer.
(c) Use a midpoint sum with three subintervals of equal length indicated by the data in the table to approximate the value of $\frac{1}{6} \int_{0}^{6} C(t) d t$. Using correct units, explain the meaning of $\frac{1}{6} \int_{0}^{6} C(t) d t$ in the context of the problem.
(d) The amount of coffee in the cup, in ounces, is modeled by $B(t)=16-16 e^{-0.4 t}$. Using this model, find the rate at which the amount of coffee in the cup is changing when $t=5$.

AP ${ }^{\circledR}$ CALCULUS AB
 2013 SCORING GUIDELINES

Ouestion 3

t (minutes)	0	1	2	3	4	5	6
$C(t)$ (ounces)	0	5.3	8.8	11.2	12.8	13.8	14.5

Hot water is dripping through a coffeemaker, filling a large cup with coffee. The amount of coffee in the cup at time $t, 0 \leq t \leq 6$, is given by a differentiable function C, where t is measured in minutes. Selected values of $C(t)$, measured in ounces, are given in the table above.
(a) Use the data in the table to approximate $C^{\prime}(3.5)$. Show the computations that lead to your answer, and indicate units of measure.
(b) Is there a time $t, 2 \leq t \leq 4$, at which $C^{\prime}(t)=2$? Justify your answer.
(c) Use a midpoint sum with three subintervals of equal length indicated by the data in the table to approximate the value of $\frac{1}{6} \int_{0}^{6} C(t) d t$. Using correct units, explain the meaning of $\frac{1}{6} \int_{0}^{6} C(t) d t$ in the context of the problem.
(d) The amount of coffee in the cup, in ounces, is modeled by $B(t)=16-16 e^{-0.4 t}$. Using this model, find the rate at which the amount of coffee in the cup is changing when $t=5$.
(a) $C^{\prime}(3.5) \approx \frac{C(4)-C(3)}{4-3}=\frac{12.8-11.2}{1}=1.6$ ounces $/ \mathrm{min}$
(b) C is differentiable $\Rightarrow C$ is continuous (on the closed interval) $\frac{C(4)-C(2)}{4-2}=\frac{12.8-8.8}{2}=2$
Therefore, by the Mean Value Theorem, there is at least one time $t, 2<t<4$, for which $C^{\prime}(t)=2$.
(c) $\frac{1}{6} \int_{0}^{6} C(t) d t \approx \frac{1}{6}[2 \cdot C(1)+2 \cdot C(3)+2 \cdot C(5)]$

$$
\begin{aligned}
& =\frac{1}{6}(2 \cdot 5.3+2 \cdot 11.2+2 \cdot 13.8) \\
& =\frac{1}{6}(60.6)=10.1 \text { ounces }
\end{aligned}
$$

$\frac{1}{6} \int_{0}^{6} C(t) d t$ is the average amount of coffee in the cup, in ounces, over the time interval $0 \leq t \leq 6$ minutes.
(d) $B^{\prime}(t)=-16(-0.4) e^{-0.4 t}=6.4 e^{-0.4 t}$
$B^{\prime}(5)=6.4 e^{-0.4(5)}=\frac{6.4}{e^{2}}$ ounces $/ \mathrm{min}$
$2:\left\{\begin{array}{l}1: \text { approximation } \\ 1: \text { units }\end{array}\right.$
$2:\left\{\begin{array}{l}1: \frac{C(4)-C(2)}{4-2} \\ 1: \text { conclusion, using MVT }\end{array}\right.$
$3:\left\{\begin{array}{l}1: \text { midpoint sum } \\ 1: \text { approximation } \\ 1: \text { interpretation }\end{array}\right.$
$2:\left\{\begin{array}{l}1: B^{\prime}(t) \\ 1: B^{\prime}(5)\end{array}\right.$

