\qquad Date \qquad Alchemy Secret \qquad
BC Calculus: TEST 5.1-6.1, NO CALCULATOR
Part I: Multiple Choice-Show all work on scratch paper and attach to the back.

1. If $G(x)$ is an antiderivative for $f(x)$ and $G(2)=-7$, then $G(4)=$
(A) $f^{\prime}(4)$
(B) $-7+f^{\prime}(4)$
(C) $\int_{2}^{4} f(t) d t$
(D) $\int_{2}^{4}(-7+f(t)) d t$
(E) $-7+\int_{2}^{4} f(t) d t$
\qquad 2. $\int x \sin (6 x) d x=$
(A) $-x \cos (6 x)+\sin (6 x)+C$
(B) $-\frac{x}{6} \cos (6 x)+\frac{1}{36} \sin (6 x)+C$
(C) $-\frac{x}{6} \cos (6 x)+\frac{1}{6} \sin (6 x)+C$
(D) $\frac{x}{6} \cos (6 x)+\frac{1}{36} \sin (6 x)+C$
(E) $6 x \cos (6 x)-\sin (6 x)+C$
2. Given that $y(1)=-3$ and $\frac{d y}{d x}=2 x+y$, what is the approximation for $y(2)$ if Euler's method is used with a step size of 0.5 , starting at $x=1$?
(A) -5
(B) -4.25
(C) -4
(D) -3.75
(E) -3.5
\qquad 4. If $\int x^{2} \cos x d x=f(x)-\int 2 x \sin x d x$, then $f(x)=$
(A) $2 \sin x+2 x \cos x+C$
(B) $x^{2} \sin x+C$
(C) $2 x \cos x-x^{2} \sin x+C$
(D) $4 \cos x-2 x \sin x+C$
(E) $\left(2-x^{2}\right) \cos x-4 \sin x+C$
_5. If the graph of $y=f(x)$ contains the point $(0,2), \frac{d y}{d x}=\frac{-x}{y e^{x^{2}}}$ and $f(x)>0$ for all x, then $f(x)=$
(A) $3+e^{-x^{2}}$
(B) $\sqrt{3}+e^{-x}$
(C) $1+e^{-x}$
(D) $\sqrt{3+e^{-x^{2}}}$
(E) $\sqrt{3+e^{x^{2}}}$
\qquad 6. Population y grows according to the equation $\frac{d y}{d t}=k y$, where k is a constant and t is measured in years. If the population doubles every 10 years, then the value of k is
(A) $\ln \sqrt[10]{2}$
(B) $\frac{1}{5}$
(C) $\ln \sqrt{10}$
(D) $2 \ln 10$
(E) 5
3. $\int \frac{x^{2}}{3+4 x+x^{2}} d x=$
(A) $1+\frac{9}{2} \ln |x+3|-\frac{1}{2} \ln |x+1|+C$
(B) $x-\frac{9}{2} \ln |x+3|+\frac{1}{2} \ln |x+1|+C$
(C) $x+\frac{9}{2} \ln |x+3|-\frac{1}{2} \ln |x+1|+C$
(D) $x-\frac{9}{2} \ln |x+3|-\frac{1}{2} \ln |x+1|+C$
(E) $1+\frac{9}{2} \ln |x+3|+\frac{1}{2} \ln |x+1|+C$
\qquad 8. Show below is a slope field for which of the following differential equations?

(A) $\frac{d y}{d x}=\frac{x}{y}$
(B) $\frac{d y}{d x}=\frac{x^{2}}{y^{2}}$
(C) $\frac{d y}{d x}=\frac{x^{3}}{y}$
(D) $\frac{d y}{d x}=\frac{x^{2}}{y}$
(E) $\frac{d y}{d x}=\frac{x^{3}}{y^{2}}$
\qquad 9. Which of the following could be the slope field for the differential equation $\frac{d y}{d x}=y^{2}-1$?
(A)

(D)

(B)

(E)

4. $\frac{d}{d x}\left(\int_{0}^{x^{2}} \sin \left(t^{3}\right) d t\right)=$
(A) $-\cos \left(x^{6}\right)$
(B) $\sin \left(x^{3}\right)$
(C) $\sin \left(x^{6}\right)$
(D) $2 x \sin \left(x^{3}\right)$
(E) $2 x \sin \left(x^{6}\right)$

Part II: Free Response-Show all work in the space provided

t (minutes)	0	1	2	3	4	5	6
$C(t)$ (ounces)	0	5.3	8.8	11.2	12.8	13.8	14.5

11. Hot water is dripping through a coffeemaker, filling a large cup with coffee. The amount of coffee in the cup at time $t, 0 \leq t \leq 6$, is given by a differentiable function C, where t I smeasured in minutes. Selected values of $C(t)$, measured in ounces, are given in the table above.
(a) Use the data in the table to estimate $C^{\prime}(3.5)$. Show the computations that lead to your answer. Using correct units, interpret the meaning of your answer in the context of this problem.
(b) Is there a time $t, 2 \leq t \leq 4$, at which $C^{\prime}(t)=2$? Justify your answer.
(c) Use a midpoint sum with three subintervals of equal length indicated by the data in the table to approximate the value of $\frac{1}{6} \int_{0}^{6} C(t) d t$. Using correct units, explain the meaning of $\frac{1}{6} \int_{0}^{6} C(t) d t$ in the context of the problem.
(d) The amount of coffee in the cup, in ounces, is modeled by $B(t)=16-16 e^{-0.4 t}$. Using this model, find the rate at which the amount of coffee in the cup is changing when $t=5$.
