$\qquad$ Date $\qquad$
$\qquad$
AP Calculus: 5.1-6.4 Calculator permitted
Part I: Multiple Choice—show all work for credit. No work, no credit. Put the capital letter in the blank to the left of each question number.
__ 1. A solid is generated when the region in the first quadrant enclosed by the graph of $y=\left(x^{2}+1\right)^{3}$, the line $x=1$, the $x$-axis, and the $y$-axis is revolved about the $x$-axis. Its volume is found by evaluating which of the following integrals?
(A) $\pi \int_{1}^{8}\left(x^{2}+1\right)^{3} d x$
(B) $\pi \int_{1}^{8}\left(x^{2}+1\right)^{6} d x$
(C) $\pi \int_{0}^{1}\left(x^{2}+1\right)^{3} d x$
(D) $\pi \int_{0}^{1}\left(x^{2}+1\right)^{6} d x$
(E) $2 \pi \int_{0}^{1}\left(x^{2}+1\right)^{6} d x$
$\qquad$ 2. If $\frac{d y}{d x}=\frac{3 x^{2}+2}{y}$, and $y=4$ when $x=2$, then when $x=3, y=$
(A) $\sqrt{66}$
(B) $-\sqrt{66}$
(C) 58
(D) $-\sqrt{58}$
(E) $\sqrt{58}$
$\qquad$ 3. The volume generated by revolving about the $y$-axis the region enclosed by the graphs of $y=9-x^{2}$ and $y=9-3 x$, for $0 \leq x \leq 2$, is
(A) $2 \pi$
(B) $4 \pi$
(C) $8 \pi$
(D) $24 \pi$
(E) $48 \pi$
4. $\int \ln (2 x) d x=$
(A) $\frac{\ln (2 x)}{x}+C$
(B) $\frac{\ln (2 x)}{2 x}+C$
(C) $x \ln x-x+C$
(D) $x \ln 2 x-x+C$
(E) $2 x \ln 2 x-2 x+C$
5. Find the distance traveled for $t \in[0,4]$ seconds for a particle whose velocity, $\mathrm{in} \mathrm{ft} / \mathrm{sec}$, is given by $v(t)=7 e^{-t^{2}}$.
(A) 0.976
(B) 6.204
(C) 6.359
(D) 12.720
(E) 7.000
$\qquad$ 6. Find the area of the region bounded by the graphs of the $f(x)=e^{-x^{2} / 4}$ and $y=0.5$.
(A) 0.516
(B) 0.480
(C) 0.240
(D) 1.032
(E) 1.349
7. The base of a solid $S$ is the region enclosed by the graphs of $4 x+5 y=20$, the $x$-axis, and the $y$-axis. If the cross-sections of $S$ perpendicular to the $x$-axis are semicircles, then the volume of $S$ is
(A) $\frac{5 \pi}{3}$
(B) $\frac{10 \pi}{3}$
(C) $\frac{50 \pi}{3}$
(D) $\frac{225 \pi}{3}$
(E) $\frac{425 \pi}{3}$
8. $\int \frac{18 x-17}{(2 x-3)(x+1)} d x=$
(A) $8 \ln |2 x-3|+7 \ln |x+1|+C$
(B) $2 \ln |2 x-3|+7 \ln |x+1|+C$
(C) $4 \ln |2 x-3|+7 \ln |x+1|+C$
(D) $7 \ln |2 x-3|+2 \ln |x+1|+C$
(E) $\frac{7}{2} \ln |2 x-3|+4 \ln |x+1|+C$
9. Use Euler's Method with $\Delta x=0.2$ to approximate $y(1)$ if $\frac{d y}{d x}=y$ and $y(0)=1$.
(A) 1.200
(B) 2.075
(C) 2.488
(D) 5.513
(E) 3.872
10. Which of the following gives the best approximation of the length of the arc of $y=\cos (2 x)$ from $x=0$ to $x=\frac{\pi}{4}$ ?
(A) 0.785
(B) 0.955
(C) 1.0
(D) 1.318
(E) 1.977

Part I: Free Response-show all work in the space provided for credit. Notation, notation, notation. Clearly communicate your results. Include units on all final numeric and verbal answers.
10.

| $t$ <br> (minutes) | 0 | 1 | 2 | 3 | 4 | 5 | 6 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $C(t)$ <br> (ounces) | 0 | 5.3 | 8.8 | 11.2 | 12.8 | 13.8 | 14.5 |

Hot water is dripping through a coffeemaker, filling a large cup with coffee. The amount of coffee in the cup at time $t, 0 \leq t \leq 6$, is given by a differentiable function $C$, where $t$ is measured in minutes. Selected values of $C(t)$, measured in ounces, are given in the table above.
(a) Use the data in the table to approximate $C^{\prime}(3.5)$. Show the computations that lead to your answer, and indicate units of measure.
(b) Is there a time $t, 2 \leq t \leq 4$, at which $C^{\prime}(t)=2$ ? Justify your answer.
(c) Use a midpoint sum with three subintervals of equal length indicated by the data in the table to approximate the value of $\frac{1}{6} \int_{0}^{6} C(t) d t$. Using correct units, explain the meaning of $\frac{1}{6} \int_{0}^{6} C(t) d t$ in the context of the problem.
(d) The amount of coffee in the cup, in ounces, is modeled by $B(t)=16-16 e^{-0.4 t}$. Using this model, find the rate at which the amount of coffee in the cup is changing when $t=5$.

