\qquad Date \qquad Period \qquad

BC Calculus: TEST 8.1 - 8.6. NO CALCULATOR, NO CALCULATOR

Part I: Multiple Choice

D

1. What is the area of the region between the graphs of $y=x^{2}$ and $y=-x$ from $x=0$ to $x=2$?
(A) $2 / 3$
(B) $8 / 3$
(C) 4
(D) $14 / 3$
(E) $16 / 3$
2. The region in the first quadrant between the x-axis and the graph of $y=6 x-x^{2}$ is rotated around the y-axis. The volume of the resulting solid of revolution is given by
(A) $\int_{0}^{6} \pi\left(6 x-x^{2}\right)^{2} d x$
(B) $\int_{0}^{6} 2 \pi x\left(6 x-x^{2}\right) d x$
(C) $\int_{0}^{6} \pi x\left(6 x-x^{2}\right)^{2} d x$
(D) $\int_{0}^{6} \pi(3+\sqrt{9-y})^{2} d y$
(E) $\int_{0}^{9} \pi(3+\sqrt{9-y})^{2} d y$
\qquad 3. The base of a solid is the region enclosed by the graph of $y=e^{-x}$, the coordinate axes, and the line $x=3$. If all plane cross sections perpendicular to the x-axis are equilateral triangles, then its volume is
(A) $\frac{\sqrt{3}\left(1-e^{-6}\right)}{8}$
(B) $\frac{\sqrt{3}}{8} e^{-6}$
(C) $\frac{\sqrt{3}}{4} e^{-6}$
(D) $\frac{\sqrt{3}}{4} e^{-3}$
(E) $\frac{\sqrt{3}}{4}\left(1-e^{-3}\right)$
C
3. What is the length of the arc of $y=\frac{2}{3} x^{3 / 2}$ from $x=0$ to $x=3$?
(A) $8 / 3$
(B) 4
(C) $14 / 3$
(D) $16 / 3$
(E) 7

4. $\lim _{x \rightarrow 0} \frac{e^{2 x}-1}{\tan x}=$
(A) -1
(B) 0
(C) 1
(D) 2
(E) DNE

C 6. $\lim _{h \rightarrow 0} \frac{\int_{1}^{1+h} \sqrt{x^{5}+8} d x}{h}=$
(A) 0
(B) 1
(C) 3
(D) $2 \sqrt{2}$
(E) NE
C
7. $\lim _{x \rightarrow \infty}\left(1+5 e^{x}\right)^{1 / x}=$
(A) 0
(B) 1
(C) e
(D) e^{5}
(E) DNE

A
8. $\int_{2}^{\infty} \frac{d x}{x^{2}}=\quad$ (A) $\frac{1}{2}$
(B) $\ln 2$
(C) 1
(D) 2
(E) ONE
E 9. $\int_{0}^{1} \frac{x+1}{x^{2}+2 x-3} d x=\quad$ (A) $-\ln \sqrt{3} \quad$ (B) $-\frac{\ln \sqrt{3}}{2} \quad$ (C) $\frac{1-\ln \sqrt{3}}{2}$
(D) $\ln \sqrt{3}$
(E) Diverges

II. Free Response: Show all work below the line.

10. Let f be the function given by $f(x)=k x^{2}-x^{3}$, where k is a positive constant. Let R be the region in the first quadrant bounded by the graph of f and the x-axis.
(a) Find all values of the constant k for which the area of R equals 2 .
(b) For $k>0$, write, but do not evaluate, an integral expression in terms of k for the volume of the solid generated when R is rotated about the x-axis.
(c) For $k>0$, write, but do not evaluate, and expression in terms of k, involving one or more integrals that gives the perimeter of R.

AP ${ }^{\circledR}$ CALCULUS BC 2008 SCORING GUIDELINES (Form B)

Question 4

Let f be the function given by $f(x)=k x^{2}-x^{3}$, where k is a positive constant. Let R be the region in the first quadrant bounded by the graph of f and the x-axis.
(a) Find all values of the constant k for which the area of R equals 2 .
(b) For $k>0$, write, but do not evaluate, an integral expression in terms of k for the volume of the solid generated when R is rotated about the x-axis.
(c) For $k>0$, write, but do not evaluate, an expression in terms of k, involving one or more integrals, that gives the perimeter of R.
(a) For $x \geq 0, f(x)=x^{2}(k-x) \geq 0$ if $0 \leq x \leq k$ $\int_{0}^{k}\left(k x^{2}-x^{3}\right) d x=\left.\left(\frac{k}{3} x^{3}-\frac{1}{4} x^{4}\right)\right|_{x=0} ^{x=k}=\frac{k^{4}}{12}$

Area $=\frac{k^{4}}{12}=2 ; k=\sqrt[4]{24}$
(b) Volume $=\pi \int_{0}^{k}\left(k x^{2}-x^{3}\right)^{2} d x$
(c) Perimeter $=k+\int_{0}^{k} \sqrt{1+\left(2 k x-3 x^{2}\right)^{2}} d x$
$4:\left\{\begin{array}{l}1: \text { integral } \\ 1: \text { antiderivative } \\ 1: \text { value of integral } \\ 1: \text { answer }\end{array}\right.$
$2:\left\{\begin{array}{l}1: \text { integrand } \\ 1: \text { limits and constant }\end{array}\right.$
$3:\left\{\begin{array}{l}1: \int_{0}^{k} \sqrt{1+\left(f^{\prime}(x)\right)^{2}} d x \\ 1: \text { uses } f^{\prime}(x)=2 k x-3 x^{2} \text { in integrand } \\ 1: \text { answer }\end{array}\right.$

