\qquad Date \qquad Period
TEST BC CH 9.1-10.2
Calculator Permitted
I. Multiple Choice: Put the capital letter of the correct answer in the blank.
\qquad 1. Which of the following is equal to the area of the region inside the polar curve $r=2 \cos \theta$ and outside the polar curve $r=\cos \theta$?
(A) $3 \int_{0}^{\pi / 2} \cos ^{2} \theta d \theta$
(B) $3 \int_{0}^{\pi} \cos ^{2} \theta d \theta$
(C) $\frac{3}{2} \int_{0}^{\pi / 2} \cos ^{2} \theta d \theta$
(D) $3 \int_{0}^{\pi / 2} \cos \theta d \theta$
(E) $3 \int^{\pi} \cos \theta d \theta$ Cos er

$$
\begin{gathered}
\left.\frac{1}{2} \int_{0}^{\pi}\left[(2 \cos \theta)^{2}-\cos ^{2} \theta\right)\right] d \theta d \theta \\
\frac{3}{2} \int_{0}^{\pi} \cos ^{2} \text { or } 3 \int_{0}^{\pi / 2}
\end{gathered}
$$

2. The graph above shows the polar curve $r=2 \theta+\cos \theta$ for $0 \leq \theta \leq \pi$. What is the area of the region bounded by the curve and the x-axis?
(A) 3.069
(B) 4.935
(C) 9.870
(D) 17.456
(E) 34.912

$$
\begin{gathered}
A=\frac{1}{2} \int_{0}^{\pi}(2 \theta+\cos \theta)^{2} d \theta \\
17.4562
\end{gathered}
$$

3. A particle moves in the $x y$-plane so that its position at any time t is given by $x(t)=t^{2}$ and $y(t)=\sin (4 t)$. What is the speed of the particle when $t=3$?
(A) 2.909
(B) 3.062
(C) 6.884
(D) 9.016
(E) 47.393

$$
\begin{gathered}
x^{\prime}=2 t \quad y^{\prime}=4 \cos 4 t \\
x^{\prime}(3)=6 \quad y^{\prime}(3)=4 \cos 12 \\
\text { speed }=\sqrt{36+16(\cos 12)^{2}} \\
\\
6.8842
\end{gathered}
$$

4. At time $t \geq 0$, a particle moving in the $x y$-plane has velocity vector given by $\vec{v}(t)=\left\langle t^{2}, 5 t\right\rangle$. What is the acceleration vector of the particle at time $t=3$?
(A) $\left\langle 9, \frac{45}{2}\right\rangle$
(B) $\langle 6,5\rangle$
(C) $\langle 2,0\rangle$
(D) $\sqrt{306}$
(E) $\sqrt{61}$

$$
\begin{aligned}
& \vec{V}^{\prime}(t)=\vec{a}(t) \\
& \vec{a}(3)=\langle 2 t, 5\rangle \\
& \vec{a}(5\rangle
\end{aligned}
$$

5. Which of the following gives the length of the path described by the parametric equations $x=\sin t^{3}$ and $y=e^{5 t}$ from $t=0$ to $t=\pi$?
(A) $\int_{0}^{\pi} \sqrt{\sin ^{2}\left(t^{3}\right)+e^{10 t}} d t$
(B) $\int_{0}^{\pi} \sqrt{\cos ^{2}\left(t^{3}\right)+e^{10 t}} d t$
(C) $\int_{0}^{\pi} \sqrt{9 t^{4} \cos ^{2}\left(t^{3}\right)+25 e^{10 t}} d t$
(D) $\int_{0}^{\pi} \sqrt{3 t^{2} \cos ^{2}\left(t^{3}\right)+5 e^{10 t}} d t$
(E) $\int_{0}^{\pi} \sqrt{\cos ^{2}\left(3 t^{2}\right)+e^{10 t}} d t$

$$
\begin{aligned}
& x^{\prime}=3 t^{2} \cos t^{3} y^{\prime}=S e^{5 t} \\
& \mathcal{L}=\int_{0}^{\pi} \sqrt{9 t^{4} \cos ^{2} t^{3}+25 e^{10 t}}
\end{aligned}
$$

6. Which of the following expressions gives the total area enclosed by the polar curve $r=\sin ^{2} \theta$ shown in the figure?
(A) $\frac{1}{2} \int_{0}^{\pi} \sin ^{2} \theta d \theta$
(B) $\int_{0}^{\pi} \sin ^{2} \theta d \theta$
(C) $\frac{1}{2} \int_{0}^{\pi} \sin ^{4} \theta d \theta$
(D) $\int_{0}^{\pi} \sin ^{4} \theta d \theta$
(E) $2 \int_{0}^{\pi} \sin ^{4} \theta d \theta$

$$
\begin{gathered}
\sin ^{2} \theta=0 \\
\sin \theta=0 \\
\theta=0, \pi \\
\text { Area }=\frac{1}{2} \int_{0}^{\pi+} \sin ^{4} \theta d \theta
\end{gathered}
$$

7. The position of a particle moving in the $x y$-plane is given by the parametric equations $x=t^{3}-3 t^{2}$ and $y=2 t^{3}-3 t^{2}-12 t$. For what values of t is the particle at rest?
(A) -1 only
(B) 0 only
(C) 2 only
(D) -1 and 2 only
(E) $-1,0$, and 2

$$
\begin{aligned}
& x^{\prime}=3 t^{2}-6 t=0 \\
& 3 t(t-2) \\
& t=0, t=2 \\
& t=2
\end{aligned}
$$

$$
\begin{gathered}
y^{\prime}=6 t^{2}-6 t-12=0 \\
6\left(t^{2}-t-2\right)=0 \\
6(t-2)(t+1)=0 \\
t=2, t=-1
\end{gathered}
$$

8. What is $\frac{d y}{d x}$ for $r=6 \cos 4 \theta$?
(A) $-\frac{\cos 4 \theta \cos \theta-\sin 4 \theta \sin \theta}{\cos 4 \theta \sin \theta+\sin 4 \theta \cos \theta}$
(B) $\frac{\cos 4 \theta \cos \theta-4 \sin 4 \theta \sin \theta}{\cos 4 \theta \sin \theta+4 \sin 4 \theta \cos \theta}$
(C) $-\frac{\cos 4 \theta \cos \theta}{\cos 4 \theta \sin \theta+4 \sin 4 \theta \cos \theta}$
(D) $-\frac{\cos 4 \theta \cos \theta-4 \sin 4 \theta \sin \theta}{\cos 4 \theta \sin \theta}$
(E) $-\frac{\cos 4 \theta \cos \theta-4 \sin 4 \theta \sin \theta}{\cos 4 \theta \sin \theta+4 \sin 4 \theta \cos \theta}$
$y=6 \cos 4 \theta \sin \theta, y^{\prime}=\frac{-24 \sin 4 \theta \sin \theta+6 \cos 4 \theta \cos \theta}{-24 \sin 4 \theta \cos \theta-6 \cos 4 \theta \sin \theta}$
$x=6 \cos 4 \theta \cos \theta, x^{\prime}=-24 \sin 4 \theta \cos \theta-6 \cos 4 \theta \sin \theta$

$$
\frac{\phi(\cos 4 \theta \cos \theta-4 \sin 4 \theta \sin \theta)}{-6(\cos 4 \theta \sin \theta+4 \sin 4 \theta \cos \theta)}
$$

B 9. If $x(t)=\cos (2 t)$ and $y(t)=\sin (2 t)$, which of the following is equal to $\frac{d^{2} y}{d x^{2}}$?
(A) $2 \csc ^{2}(2 t)$
(B) $-\csc ^{3}(2 t)$
(C) $\csc ^{3}(2 t)$

$$
\begin{aligned}
y^{\prime} & =2 \cos (2 t)^{(D)-2 \csc (2 t)} \quad(\mathrm{E})-2 \csc ^{2}(2 t) \\
x^{\prime} & =-2 \sin (2 t) \quad \frac{d y}{d x}
\end{aligned}=-\cot (2 t) \quad \begin{aligned}
\frac{d^{2} y}{d x^{2}} & =\frac{2 \csc ^{2}(2 t)}{-2 \sin (2 t)} \\
& =-\frac{\csc ^{2}(2 t)}{\sin (2 t)}=-\csc ^{3}(2 t)
\end{aligned}
$$

$(2013, B C-2)$

14. The graphs of the polar curves $r=3$ and $r=4-2 \sin \theta$ are shown in the figure above. The curves intersect when $\theta=\frac{\pi}{6}$ and $\theta=\frac{5 \pi}{6}$.
(a) Let S be the shaded region that is inside the graph of $r=3$ and also inside the graph of $r=4-2 \sin \theta$. Find the area of S.
(b) A particle moves along the polar curve $r=4-2 \sin \theta$ so that at time t seconds, $\theta=t^{2}$. Find the time t in the interval $1 \leq t \leq 2$ for which the x-coordinate of the particle's position is -1 .
(c) For the particle described in part (b), find the position vector in terms of t. Find the velocity vector at time $t=1.5$.

AP ${ }^{\oplus}$ CALCULUS BC 2013 SCORING GUIDELINES

Question 2

The graphs of the polar curves $r=3$ and $r=4-2 \sin \theta$ are shown in the figure above. The curves intersect when $\theta=\frac{\pi}{6}$ and $\theta=\frac{5 \pi}{6}$.
(a) Let S be the shaded region that is inside the graph of $r=3$ and also inside the graph of $r=4-2 \sin \theta$. Find the area of S.
(b) A particle moves along the polar curve $r=4-2 \sin \theta$ so that at time t seconds, $\theta=t^{2}$. Find the time t in the interval $1 \leq t \leq 2$ for which
 the x-coordinate of the particle's position is -1 .
(c) For the particle described in part (b), find the position vector in terms of t. Find the velocity vector at time $t=1.5$.
(a) Area $=6 \pi+\frac{1}{2} \int_{\pi / 6}^{5 \pi / 6}(4-2 \sin \theta)^{2} d \theta=24.709$ (or 24.708)
$\sum\left[\frac{1}{2} \int_{-\frac{\pi}{2}}^{\pi / 6}\left(3^{2}\right) d \theta+\frac{1}{2} \int_{\pi / 6}^{\pi / 2}(4-2 \sin \theta)^{2} d \theta\right]$
(b) $x=r \cos \theta \Rightarrow x(\theta)=(4-2 \sin \theta) \cos \theta$
$x(t)=\left(4-2 \sin \left(t^{2}\right)\right) \cos \left(t^{2}\right)$
$x(t)=-1$ when $t=1.428($ or 1.427$)$
(c) $y=r \sin \theta \Rightarrow y(\theta)=(4-2 \sin \theta) \sin \theta$
$y(t)=\left(4-2 \sin \left(t^{2}\right)\right) \sin \left(t^{2}\right)$

$$
\begin{aligned}
& \text { Position vector }=\langle x(t), y(t)\rangle \\
& =\left\langle\left(4-2 \sin \left(t^{2}\right)\right) \cos \left(t^{2}\right),\left(4-2 \sin \left(t^{2}\right)\right) \sin \left(t^{2}\right)\right\rangle \\
& \begin{aligned}
v(1.5) & =\left\langle x^{\prime}(1.5), y^{\prime}(1.5)\right\rangle \\
& =\langle-8.072,-1.673\rangle(\text { or }\langle-8.072,-1.672\rangle)
\end{aligned}
\end{aligned}
$$

$3:\left\{\begin{array}{l}1: \text { integrand } \\ 1: \text { limits and constant } \\ 1: \text { answer }\end{array}\right.$
$3:\left\{\begin{array}{l}1: x(\theta) \text { or } x(t) \\ 1: x(\theta)=-1 \text { or } x(t)=-1 \\ 1: \text { answer }\end{array}\right.$

$3:\left\{\begin{array}{l}2: \text { position vector } \\ 1: \text { velocity vector }\end{array}\right.$

