\qquad Date \qquad Period \qquad
TEST BC CH 7.1-8.2
Calculator Permitted
I. Multiple Choice: Put the capital letter of the correct answer in the blank.
\qquad 1. Which of the following is equal to the area of the region inside the polar curve $r=2 \cos \theta$ and outside the polar curve $r=\cos \theta$?
(A) $3 \int_{0}^{\pi / 2} \cos ^{2} \theta d \theta$
(B) $3 \int_{0}^{\pi} \cos ^{2} \theta d \theta$
(C) $\frac{3}{2} \int_{0}^{\pi / 2} \cos ^{2} \theta d \theta$
(D) $3 \int_{0}^{\pi / 2} \cos \theta d \theta$
(E) $3 \int_{0}^{\pi} \cos \theta d \theta$

2. The graph above shows the polar curve $r=2 \theta+\cos \theta$ for $0 \leq \theta \leq \pi$. What is the area of the region bounded by the curve and the x-axis?
(A) 3.069
(B) 4.935
(C) 9.870
(D) 17.456
(E) 34.912
3. A particle moves in the $x y$-plane so that its position at any time t is given by $x(t)=t^{2}$ and $y(t)=\sin (4 t)$. What is the speed of the particle when $t=3$?
(A) 2.909
(B) 3.062
(C) 6.884
(D) 9.016
(E) 47.393
\qquad 4. At time $t \geq 0$, a particle moving in the $x y$-plane has velocity vector given by $\vec{v}(t)=\left\langle t^{2}, 5 t\right\rangle$. What is the acceleration vector of the particle at time $t=3$?
(A) $\left\langle 9, \frac{45}{2}\right\rangle$
(B) $\langle 6,5\rangle$
(C) $\langle 2,0\rangle$
(D) $\sqrt{306}$
(E) $\sqrt{61}$
\qquad 5. Which of the following gives the length of the path described by the parametric equations $x=\sin t^{3}$ and $y=e^{5 t}$ from $t=0$ to $t=\pi$?
(A) $\int_{0}^{\pi} \sqrt{\sin ^{2}\left(t^{3}\right)+e^{10 t}} d t$
(B) $\int_{0}^{\pi} \sqrt{\cos ^{2}\left(t^{3}\right)+e^{10 t}} d t$
(C) $\int_{0}^{\pi} \sqrt{9 t^{4} \cos ^{2}\left(t^{3}\right)+25 e^{10 t}} d t$
(D) $\int_{0}^{\pi} \sqrt{3 t^{2} \cos ^{2}\left(t^{3}\right)+5 e^{10 t}} d t$
(E) $\int_{0}^{\pi} \sqrt{\cos ^{2}\left(3 t^{2}\right)+e^{10 t}} d t$
6. Which of the following expressions gives the total area enclosed by the polar curve $r=\sin ^{2} \theta$ shown in the figure?
(A) $\frac{1}{2} \int_{0}^{\pi} \sin ^{2} \theta d \theta$
(B) $\int_{0}^{\pi} \sin ^{2} \theta d \theta$
(C) $\frac{1}{2} \int_{0}^{\pi} \sin ^{4} \theta d \theta$
(D) $\int_{0}^{\pi} \sin ^{4} \theta d \theta$
(E) $2 \int_{0}^{\pi} \sin ^{4} \theta d \theta$

7. The position of a particle moving in the $x y$-plane is given by the parametric equations $x=t^{3}-3 t^{2}$ and $y=2 t^{3}-3 t^{2}-12 t$. For what values of t is the particle at rest?
(A) -1 only
(B) 0 only
(C) 2 only
(D) -1 and 2 only
(E) $-1,0$, and 2
8. What is $\frac{d y}{d x}$ for $r=6 \cos 4 \theta$?
(A) $-\frac{\cos 4 \theta \cos \theta-\sin 4 \theta \sin \theta}{\cos 4 \theta \sin \theta+\sin 4 \theta \cos \theta}$
(B) $\frac{\cos 4 \theta \cos \theta-4 \sin 4 \theta \sin \theta}{\cos 4 \theta \sin \theta+4 \sin 4 \theta \cos \theta}$
(C) $-\frac{\cos 4 \theta \cos \theta}{\cos 4 \theta \sin \theta+4 \sin 4 \theta \cos \theta}$

$$
\begin{array}{ll}
\text { (D) }-\frac{\cos 4 \theta \cos \theta-4 \sin 4 \theta \sin \theta}{\cos 4 \theta \sin \theta} & \text { (E) }-\frac{\cos 4 \theta \cos \theta-4 \sin 4 \theta \sin \theta}{\cos 4 \theta \sin \theta+4 \sin 4 \theta \cos \theta}
\end{array}
$$

-_ 9. If $x(t)=\cos (2 t)$ and $y(t)=\sin (2 t)$, which of the following is equal to $\frac{d^{2} y}{d x^{2}}$?
(A) $2 \csc ^{2}(2 t)$
(B) $-\csc ^{3}(2 t)$
(C) $\csc ^{3}(2 t)$
(D) $-2 \csc ^{3}(2 t)$
(E) $-2 \csc ^{2}(2 t)$

14. The graphs of the polar curves $r=3$ and $r=4-2 \sin \theta$ are shown in the figure above. The curves intersect when $\theta=\frac{\pi}{6}$ and $\theta=\frac{5 \pi}{6}$.
(a) Let S be the shaded region that is inside the graph of $r=3$ and also inside the graph of $r=4-2 \sin \theta$. Find the area of S.
(b) A particle moves along the polar curve $r=4-2 \sin \theta$ so that at time t seconds, $\theta=t^{2}$. Find the time t in the interval $1 \leq t \leq 2$ for which the x-coordinate of the particle's position is -1 .
(c) For the particle described in part (b), find the position vector in terms of t. Find the velocity vector at time $t=1.5$.

