\qquad Date \qquad Period \qquad
TEST BC CH 8.1-9.1
No Calculator (except on F.R., \#13 \& \#14)
I. Multiple Choice: Put the capital letter of the correct answer in the blank.
\qquad 1. At time $t \geq 0$, a particle moving in the $x y$-plane has velocity vector given by $v(t)=\left\langle t^{2}, 5 t\right\rangle$. What is the acceleration vector of the particle at time $t=3$?
(A) $\left\langle 9, \frac{45}{2}\right\rangle$
(B) $\langle 6,5\rangle$
(C) $\langle 2,0\rangle$
(D) $\sqrt{306}$
(E) $\sqrt{61}$
2. Consider the series $\sum{n=1}^{\infty} \frac{e^{n}}{n!}$. If the ratio test is applied to the series, which of the following inequalities results, implying that the series converges?
(A) $\lim _{n \rightarrow \infty} \frac{e}{n!}<1$
(B) $\lim _{n \rightarrow \infty} \frac{n!}{e}<1$
(C) $\lim _{n \rightarrow \infty} \frac{n+1}{e}<1$
(D) $\lim _{n \rightarrow \infty} \frac{e}{n+1}<1$
(E) $\lim _{n \rightarrow \infty} \frac{e}{(n+1)!}<1$
\qquad 3. Which of the following gives the length of the path described by the parametric equations $x=\sin t^{3}$ and $y=e^{5 t}$ from $t=0$ to $t=\pi$?
(A) $\int_{0}^{\pi} \sqrt{\sin ^{2}\left(t^{3}\right)+e^{10 t}} d t$
(B) $\int_{0}^{\pi} \sqrt{\cos ^{2}\left(t^{3}\right)+e^{10 t}} d t$
(C) $\int_{0}^{\pi} \sqrt{9 t^{4} \cos ^{2}\left(t^{3}\right)+25 e^{10 t}} d t$
(D) $\int_{0}^{\pi} \sqrt{3 t^{2} \cos ^{2}\left(t^{3}\right)+5 e^{10 t}} d t$
(E) $\int_{0}^{\pi} \sqrt{\cos ^{2}\left(3 t^{2}\right)+e^{10 t}} d t$
\qquad 4. Let R be the region between the graph of $y=e^{-2 x}$ and the x-axis for $x \geq 3$. The area of R is
(A) $\frac{1}{2 e^{6}}$
(B) $\frac{1}{e^{6}}$
(C) $\frac{2}{e^{6}}$
(D) $\frac{\pi}{2 e^{6}}$
(E) infinite
\qquad 5. Which of the following expressions gives the total area enclosed by the polar curve $r=\sin ^{2} \theta$ shown in the figure?
(A) $\frac{1}{2} \int_{0}^{\pi} \sin ^{2} \theta d \theta$
(B) $\int_{0}^{\pi} \sin ^{2} \theta d \theta$
(C) $\frac{1}{2} \int_{0}^{\pi} \sin ^{4} \theta d \theta$
(D) $\int_{0}^{\pi} \sin ^{4} \theta d \theta$
(E) $2 \int_{0}^{\pi} \sin ^{4} \theta d \theta$

6. Let f be a positive, continuous, decreasing function such that $a{n}=f(n)$. If $\sum_{n=1}^{\infty} a_{n}$ converges to k, which of the following must be true?
(A) $\lim _{n \rightarrow \infty} a_{n}=k$
(B) $\int_{1}^{n} f(x) d x=k$
(C) $\int_{1}^{\infty} f(x) d x$ diverges
(D) $\int_{1}^{\infty} f(x) d x$ converges
(E) $\int_{1}^{\infty} f(x) d x=k$
__ 7. If $\sum_{n=1}^{\infty} a_{n}$ diverges and $0 \leq a_{n} \leq b_{n}$ for all n, which of the following statements must be true?
(A) $\sum_{n=1}^{\infty}(-1)^{n} a_{n}$ converges
(B) $\sum_{n=1}^{\infty}(-1)^{n} b_{n}$ converges
(C) $\sum_{n=1}^{\infty}(-1)^{n} b_{n}$ diverges
(D) $\sum_{n=1}^{\infty} b_{n}$ converges
(E) $\sum_{n=1}^{\infty} b_{n}$ diverges
\qquad 8. What are all values of p for which $\int_{1}^{\infty} \frac{1}{x^{2 p}} d x$ converges?
(A) $p<-1$
(B) $p>0$
(C) $p>\frac{1}{2}$
(D) $p>1$
(E) There are no values of p for which this integral converges.
9. The position of a particle moving in the $x y$-plane is given by the parametric equations $x=t^{3}-3 t^{2}$ and $y=2 t^{3}-3 t^{2}-12 t$. For what values of t is the particle at rest?
(A) -1 only
(B) 0 only
(C) 2 only
(D) -1 and 2 only
(E) $-1,0$, and 2
10. What is the value of $\sum_{n=1}^{\infty} \frac{2^{n+1}}{3^{n}}$?
(A) 1
(B) 2
(C) 4
(D) 6
(E) The series diverges
11. What are all values of p for which the infinite series $\sum_{n=1}^{\infty} \frac{n}{n^{p}+1}$ converges?
(A) $p>0$
(B) $p \geq 1$
(C) $p>1$
(D) $p \geq 2$
(E) $p>2$
12. Which of the following series diverge?

$$
\text { I. } \sum_{n=0}^{\infty}\left(\frac{\sin 2}{\pi}\right)^{n} \quad \text { II. } \sum_{n=1}^{\infty} \frac{1}{\sqrt[3]{n}} \quad \text { III. } \sum_{n=1}^{\infty}\left(\frac{e^{n}}{e^{n}+1}\right)
$$

(A) III only
(B) I and II only
(C) I and III only
(D) II and III only
(E) I, II, and III
13. For $t \geq 0$, a particle is moving along a curve so that its position at time t is $(x(t), y(t))$. At time $t=2$, the particle is at position $(1,5)$. It is known that $\frac{d x}{d t}=\frac{\sqrt{t+2}}{e^{t}}$ and $\frac{d y}{d t}=\sin ^{2} t$.
(a) Is the horizontal movement of the particle to the left or to the right at time $t=2$. Explain your answer. Find the slope of the path of the particle at time $t=2$.
(b) Find the x-coordinate of the particle's position at time $t=4$.
(c) Find the speed of the particle at time $t=4$. Find the acceleration vector of the particle at time $t=4$.
(d) Find the distance traveled by the particle from time $t=2$ to $t=4$.
14. (Calculator Permitted) The graphs of the polar curves $r=3$ and $r=4-2 \sin \theta$ are shown in the figure at right. The curves intersect when $\theta=\frac{\pi}{6}$ and $\theta=\frac{5 \pi}{6}$.
(a) Let S be the shaded region that is inside the graph of $r=3$ and also inside the graph of $r=4-2 \sin \theta$. Find the area of S.

(b) A particle moves along the polar curve $r=4-2 \sin \theta$ so that at time t seconds, $\theta=t^{2}$. Find the time t in the interval $1 \leq t \leq 2$ for which the x-coordinate of the particle's position is -1 .
(c) For the particle described in part (b), find the position vector in terms of t. Find the velocity vector at time $t=1.5$.

