\qquad Date \qquad Period \qquad
TEST Taylor Polynomials and Taylor Series

Calculator Permitted

Multiple Choice

_1. The Taylor series for $\sin x$ about $x=0$ is $x-\frac{x^{3}}{3!}+\frac{x^{5}}{5!}-\cdots$. If f is a function such that $f^{\prime}(x)=\sin \left(x^{2}\right)$, then the coefficient of x^{7} in the Taylor series for $f(x)$ about $x=0$ is
(A) $\frac{1}{7!}$
(B) $\frac{1}{7}$
(C) 0
(D) $-\frac{1}{42}$
(E) $-\frac{1}{7!}$
2. What are all values of x for which the series $\sum{n=1}^{\infty} \frac{(x-2)^{n}}{n \cdot 3^{n}}$ converges?
(A) $-3 \leq x \leq 3$
(B) $-3<x<3$
(C) $-1<x \leq 5$
(D) $-1 \leq x \leq 5$
(E) $-1 \leq x<5$
\qquad 3. Let f be the following function given by $f(x)=\ln (3-x)$. The third-degree Taylor polynomial for f about $x=2$ is
(A) $-(x-2)+\frac{(x-2)^{2}}{2}-\frac{(x-2)^{3}}{3}$
(B) $-(x-2)-\frac{(x-2)^{2}}{2}-\frac{(x-2)^{3}}{3}$
(C) $(x-2)+(x-2)^{2}+(x-2)^{3}$
(D) $(x-2)+\frac{(x-2)^{2}}{2}+\frac{(x-2)^{3}}{3}$
(E) $(x-2)-\frac{(x-2)^{2}}{2}+\frac{(x-2)^{3}}{3}$
4. If $f(x)=\sum{k=1}^{\infty}\left(\sin ^{2} x\right)^{k}$, then $f(1)$ is
(A) 0.369
(B) 0.585
(C) 2.400
(D) 2.426
(E) 3.426
_5. A function f has Maclaurin series given by $1+\frac{x^{2}}{2!}+\frac{x^{4}}{4!}+\frac{x^{6}}{6!}+\cdots+\frac{x^{2 n}}{(2 n)!}+\cdots$. Which of the following is an expression for $f(x)$?
(A) $\cos x$
(B) $e^{x}-\sin x$
(C) $e^{x}+\sin x$
(D) $\frac{1}{2}\left(e^{x}+e^{-x}\right)$
(E) $e^{x^{2}}$

Free Response

(2002-BC6) The Maclaurin series for the function f is given by

$$
f(x)=\sum_{n=0}^{\infty} \frac{(2 x)^{n+1}}{n+1}=2 x+\frac{4 x^{2}}{2}+\frac{8 x^{3}}{3}+\frac{16 x^{4}}{4}+\cdots+\frac{(2 x)^{n+1}}{n+1}+\cdots
$$

on its interval of convergence.
(a) Find the interval of convergence of the Maclaurin series for f. Justify your answer.
(b) Find the first four terms and the general term for the Maclaurin series for $f^{\prime}(x)$.
(c) Use the Maclaurin series you found in part (b) to find the value of $f^{\prime}\left(-\frac{1}{3}\right)$.

