$\angle E \varphi$
PCPAP TEST: Chapter 1.1-2.2 2017
No Calculator A
\qquad Period \qquad

Part I: Multiple Choice. Put the CAPIIAL letter in each blank to the left of the problem number.
The graph of $g(x)$ is give at right. Use the graph to answer questions 1-4.
B

1. $\lim g(x)=$
(A) 2 (B) 3
(C) 4
(D) 5
(E) DNE
H_{2}
2. $\lim _{x \rightarrow 0^{+}} g(x)=$
(A) 2
(B) 3
(C) 4
(D) 6
(E) DNE
E
3. $\lim _{x \rightarrow 6} g(x)=$
(A) 2 (B) 3
(C) 4
(D) 5
(E) DNE

B
4. $g(2)=$
$\begin{array}{ll}\text { (A) } 3 & \text { (B) } 4\end{array}$
(C) 5
(D) 6
(E) DNE

C5. The function $f(x)=\frac{x^{2}+6 x-16}{x^{2}-9 x+14}$ has a removable point discontinuity at
(A) $(2,2)$
(B) $(7,15)$
(C) $(2,-2)$
(D) $(7,-5)$
(E) $(8,-7)$
$f(x)=\frac{(x+8)(x-2)}{(x-7)(x-2)}$
thle $e\left(2, \frac{2+8}{2-7}\right)=\left(2, \frac{10}{-5}\right)=(2,-2)$

E 6. Simplify: $\frac{5 x^{-2} y^{2}+7 x^{2} y^{-3}}{x^{-2} y^{-1}+3 x}$
(A) $\frac{5 x^{4}+7 y^{5}}{x^{3} y+3 x^{3} y^{2}}$
(B) $\frac{5 x^{4} \sqrt{y}+7 \sqrt{x} y^{4}}{1+3 y}$
(C) $\frac{5 x^{4} y+7 x y^{4}}{1+3 x^{3} y}$
(D) $\frac{5 x^{2} y^{2}+7 x^{2} y^{3}}{x^{2} y+3 x}$
(E) $\frac{5 y^{5}+7 x^{4}}{y^{2}+3 x^{3} y^{3}}$
$\frac{\frac{5 y^{2}}{x^{2}}+\frac{7 x^{2}}{y^{3}}\left(\frac{x^{2} y^{3}}{x^{2} y}\right)}{\frac{1}{x^{2} y}+\frac{3 x}{1}}\left(x^{3}\right)$

$$
\frac{5 y^{5}+7 x^{4}}{y^{2}+3 x^{3} y^{3}}
$$

$$
\text { D. If }^{\text {If }} f(x)= \begin{cases}x^{2}+1, & x \leq-2 \\ -3 x-1, & -2<x \leq 2 \\ \frac{8}{x}, & x>2\end{cases}
$$

Which of the following is NOT true regarding $f(x)$?
(A) The domain of g is the set of all real numbers
(C) The $\lim _{x \rightarrow 2^{+}} f(x)=4$
(D) There is a vertical asymptote at $\mathrm{x}=0$
(E) There is a jump at $\mathrm{x}=2$
(B) The $\lim _{x \rightarrow 2^{-}} f(x)=-7$
\checkmark

C8. Find the domain of $h(x)=\frac{\sqrt{x+9}}{\sqrt{x}-1} \cdot D_{h}$:
(A) $\{x \mid x \neq 0,1\}$
(B) $\{x \mid x \geq-9, x \neq 1\}$
(C) $\{x \mid x \geq 0, x \neq 1\}$
(D) $\{x \mid x \geq 0\}$
(E) $\{x \mid x \geq-9, x \neq 0\}$

$$
x+9 \geqslant 0 \quad x \geqslant 0 \quad \sqrt{x}-1 \neq 0
$$

$$
\begin{array}{r}
x+9 \geq 0 \\
x \geq-9
\end{array}
$$

$$
x \geq-9 \quad x \geq 0 \quad \sqrt{x} \neq 1
$$

H Morerestretive

$$
\begin{array}{l}\text { than } x \geqslant-9\end{array} \quad \frac{5}{2 x+\frac{x+3}{x+5}} \quad \begin{aligned} \frac{x-5}{x+5}\end{aligned} \text { is } D_{B}: x \neq 0 \quad x+5 \neq 0 \quad x \neq-5 \quad x \neq S \neq 0
$$

(A) $\{x \mid x \neq-5,0,5\}$
(B) $\{x \mid x \neq 0,5\}$
(C) $\{x \mid x \neq 0,-5\}$
(D) $\{x \mid x \neq 0\}$
(E) $\{x \mid x \neq-5\}$

Part II: Free Response
Show all work in a logical, vertical sequence and use proper notation. Your bottom line in each problem will be your answer. Work each problem in the space provided.
10. For the following functions, $f(x)=-3 \sqrt{-6-2 x}+17, g(x)=\sqrt{x+16}, \quad h(x)=x^{2}+4 x-21$ answer the following questions.
(a) Set up and simplify the equation for the function $P(x)=g(h(x))$, and then find the domain. Show the work that leads to your answer. Give your domain in either proper set or interval notation.

$$
\begin{aligned}
& P(x)=\sqrt{\left(x^{2}+4 x-21\right)+16} \\
& P(x)=\sqrt{x^{2}+4 x-5} \text { or } \sqrt{1}
\end{aligned}
$$

(b) Set up the equation for the function $R(x)=\frac{2 x-8}{g(x)}$, and then find the domain of $R(x)$. Show the work that leads to your answer. Give your domain in either proper set or interval notation.

$$
\begin{array}{lr}
\frac{\text { Rad }}{x+16 \geqslant 0} & \frac{\text { Denom }}{\sqrt{x+16}} \neq 0 \\
x \geq-16 & x \neq-16
\end{array}
$$

$$
D_{R}:\{x \mid x=-l / k\}
$$

$$
D_{R}:(-1-1, \infty)
$$

$$
\begin{aligned}
& x^{2}+4 x-5 \geqslant 0 \\
& (x+5)(x-1) \geqslant 0
\end{aligned}
$$

(c) Set up the equation for the function $J(x)=\frac{f(x)}{h(x)}$, and then find the domain of $J(x)$. Show the work that leads to your answer. Give your domain in either proper set or interval notation. . DO NOT DOUBLY EXCLUDE ANY VALUES!!!

$$
\begin{gathered}
\frac{\text { Rad }}{-6-2 x \geqslant 0 \quad} \quad \frac{\text { Denom }}{x^{2}+4 x-21 \neq 0} \\
-2 x \geqslant 6 \quad(x+7)(x-3) \neq 0 \\
x \leq-3 \quad x \neq-7, x \neq 3 \\
D:\{x) x \leqslant-3, x \neq-7\}
\end{gathered}
$$

$$
\text { (d) Set up and completely simplify } \frac{h(x+p)-h(x)}{p} \text { for some constant } \mathrm{p} \text {. Show the work that leads to }
$$ your answer.

$$
h(x)=x^{2}+4 x-21
$$

$$
\frac{\left[(x+p)^{2}+4(x+p)-21\right]-\left[x^{2}+4 x-21\right]}{p}
$$

$$
\frac{p(2 x+p+4)}{p}
$$

$$
2 x+p+4
$$

