\qquad KEp φ Date
 Period

PCPAP TEST: Chapter 1.1-2.2 2018-2019
No Calculator, Form A 18 checks total
Part I: Multiple Choice. Put the CAPITAL letter in each blank to the left of the problem number.
The graph of $Q(x)$ is give below. It has a Vertical Asymptote at $x=-2$. Use the graph to answer questions 1-4.

B

1. $Q(10)=$
(A) 10
(B) 0
(C) -3
(D) -4
(E) oNE

E2. $\lim _{x \rightarrow 6} Q(x)=$
(A) 2
(B) 5
(C) 0
(D) 4
(E) ONE
$\lim _{x \rightarrow 6^{-}} Q(x)=2 \neq \lim _{x \rightarrow 6^{+}} Q(x)=5$

3. $\lim _{+^{+}} Q(x)=(\mathrm{A})-\infty$
(B) ∞
(C) 3
(D) 7
(E) 0
4. $\lim _{x \rightarrow-8^{-}} Q(x)=(\mathrm{A})-3$
(B) -6
(C) 0
(D) -4
(E) NE
E
5. A function $P(x)$ has the property that $\lim _{x \rightarrow 3} P(x)=D N E$. Which of the following discontinuities can the graph of $P(x)$ possibly have at $\begin{gathered}x \rightarrow 3 \\ x=3\end{gathered}$
I. Removable Point Discontinuity
II. Non-Removable Jump Discontinuity
III. Non-Removable Infinite Discontinuity

(A) I only
(B) II only
(C) III only
(D) I and II only
(E) II and III only
B.
6. Simplify: $\frac{2 x^{-1} y^{2}-3 x^{-2} y^{-1}}{4 x^{-3} y^{3}+5 x^{4} y}$
(A) $\frac{x^{2} y^{3}-3 x}{2 y^{4}+5 x^{12} y^{2}}$
(B) $\frac{2 x^{2} y^{3}-3 x}{4 y^{4}+5 x^{7} y^{2}}$
(C) $\frac{2 x^{2} y^{3}-3 x}{4 y^{4}+5 x^{12} y^{2}}$
(D) $\frac{x^{2} y^{3}-3 x}{2 y^{4}+5 x^{7} y^{2}}$
(E) $\frac{2 x^{2}-3}{4 y+5 x^{6} y^{2}}$

$$
\begin{aligned}
& \frac{\frac{2 y^{2}}{x}-\frac{3}{x^{2} y}}{\frac{4 y^{3}}{x^{3}}+\frac{5 x^{4} y}{1}} \cdot\left(\frac{\frac{x^{3} y}{1}}{\frac{x^{3} y}{1}}\right)^{\text {LCM }} \\
& \frac{2 x^{2} y^{3}-3 x}{4 y^{4}+5 x^{7} y^{2}}
\end{aligned}
$$

D
7. If $f(x)= \begin{cases}-2 x-8, & x<-3 \\ 4, & x=-3 . \\ x^{2}-11, & x>-3\end{cases}$
$\begin{array}{ll}\text { (A) } f(-4)=0 & \text { (B) } \lim _{x \rightarrow-3^{-}} f(x)=-2\end{array}$
(D) $f(x)$ has a jump discontinuity at $x=-3$
(C) $\lim _{x \rightarrow-3^{+}} f(x)=-2$
D
8. Find the domain of $h(x)=\frac{\sqrt{x^{2}-16}}{\sqrt{x}+2} . D_{h}$:
(A) $\{x \mid x \leq-4$ or $x \geq 4\}$
(B) $\{x \mid 0<x<4\}$
(C) $\{x \mid x \leq-4$ or $x>4\}$
(D) $\{x \mid x \geq 4\}$
(E) $\{x \mid x>4\}$

Rad II
$\underline{x \geqslant 0} \quad \begin{aligned} & \text { Senom } \\ & \sqrt{x}+2 \neq 0 \\ & \sqrt{x} \neq-2\end{aligned}$
$x \neq 4$
$x \neq 4$
but $\sqrt{4}+2 \neq 0$
So $x=4$ is extrimeous
So, $x \geqslant 4$, since when
$x \geqslant 0, x \leqslant-4$ and $x \geqslant 4$
D 9. The function $f(x)=\frac{x^{2}+2 x-8}{x^{2}+10 x+24}$ has a removable point discontinuity (hole) at
(A) $\left(4,-\frac{1}{5}\right)$
(B) $\left(-4,-\frac{1}{5}\right)$
(C) $\left(-4, \frac{1}{5}\right)$
(D) $(-4,-3)$
(E) $(-4,3)$
$f(x)=\frac{(x+14)(x-2)}{(x+4)(x+6)}$
hole at $\left(-4, \frac{-4-2}{-4+6}\right)$
$\left(-4, \frac{-6}{2}\right)$
$(-4,-3)$

Show all work in a logical, vertical sequence. Remember that your process and notation are worth points too, not just your answer. You must communicate your results properly, not just attain them.
10. For the following functions, $f(x)=\sqrt{x+5}-4, g(x)=\sqrt{-x+9}, h(x)=x^{2}-2 x-15$ answer the following questions.
(a) Set up and simplify the equation for the function $K(x)=g(h(x))$, and then find the domain of $K(x)$ by sketching a graph of your radicand. *Be careful to use parentheses when substituting in for x, so that you may distribute any necessary values* Show the work, including the graph, that leads to your answer. Give your domain in either proper set or interval notation.

$$
\begin{aligned}
K(x) & =g(h(x)) \\
& =\sqrt{-\left(x^{2}-2 x-15\right)+9} \\
& =\sqrt{-x^{2}+2 x+15+9} \\
& =\sqrt{-x^{2}+2 x+24}
\end{aligned}
$$

Denom
$-x^{2}+2 x+24 \geqslant 0 \quad$ or $\quad \frac{\text { Denom }}{-x^{2}+2 x+24 \geqslant 0}$
$-\left(x^{2}-2 x-24\right) \geq 0 \quad x^{2}-2 x-24 \leq 0$
$-(x-6)(x+4) \geqslant 0 \begin{gathered}\text { Q on or } \\ \text { above } \\ x \rightarrow-x i s\end{gathered}$

$$
D_{k}:\{x \mid-4 \leq x \leq 6\}
$$

(b) Set up the equation for the function $R(x)=\frac{2 x-10}{h(x)}$. Determine the equation and/or coordinates (x, y), of any vertical asymptotes and holes, respectively. Show the work that leads to your answer, and use proper notation.

$$
\begin{aligned}
& R(x)=\frac{2 x-10}{x^{2}-2 x-15} \\
&=\frac{2(x-5)}{(x-5)(x+3)} \\
&=\frac{2}{x+3}, x \neq 5 \\
& R \text { has a VA@ } x=-3(\sqrt{3} \\
& R \text { has a hole } e\left(5, \frac{2}{8}\right)=\left(5, \frac{1}{4}\right) \sqrt[4]{\sqrt[4]{5}} x \text {-value }
\end{aligned}
$$

(c) Set up the equation for the function $J(x)=\frac{h(x)}{f(x)}$, and then find the domain of $J(x)$. Show the work that leads to your answer. Give your domain in either proper set or interval notation.

$$
\begin{aligned}
& J(x)=\frac{x^{2}-2 x-15}{\sqrt{x+5}-4} \\
& \frac{\text { Rad }}{x+5 \geqslant 0} \quad \frac{\text { Dena }}{\sqrt{x+5}-4 \neq 0} \\
& x \geqslant-5 \quad \sqrt{x+5} \neq 4 \\
& x+5 \neq 16 \\
& x \neq 1 \\
& \text { check: } \sqrt{11+5}-4 \\
& D_{5}:\{x \mid \times 2-5 \times x+1 / 15 \\
& \sqrt{16}-4 \\
& \begin{array}{c}
4-4 \\
0
\end{array} \\
& {[-5,11) \cup(1, \infty)}
\end{aligned}
$$

(d) Set up and completely simplify $\frac{h(x+w)-h(x)}{w}$ for some constant w. Show the work that leads to your answer.

$$
h(x)=x^{2}-2 x-15
$$

$$
\begin{gathered}
\frac{(x+w)^{2}-2(x+w)-15-\left(x^{2}-2 x-15\right)}{w} \\
\frac{(x+w)^{2}-2(x+w)-15-x^{2}+2 x+15}{w} \\
\frac{x^{2}+2 x w+w^{2}-2 x-2 w-15-x^{2}+2 x+15}{w} \\
\frac{w+2 x+w}{w}
\end{gathered}
$$

