\qquad Date \qquad
\qquad
PreAP Precalculus
TEST Chapter 2.1-2.3, Form A. No Calculator
Part I: Multiple Choice, Put your CAPITAL LETTER answer choice in the blank to the left of the number.
Use the graph of $f(x)$ below for $-3 \leq x \leq 5$ to answer questions 1-5.

\qquad 1. $\lim _{x \rightarrow-1} f(x)=$
(A) -1
(B) 0
(C) 1
(D) 2
(E) DNE
\qquad 2. $f(x)$ is monotonic/strictly increasing on which of the following given intervals?
(A) $(-3,-2)$
(B) $(-1,2)$
(C) $(1,2)$
(D) $(3,4)$
(E) $(-2,-1)$
\qquad 3. $f(x)$ has a relative/local minimum of
(A) 5
(B) -1
(C) 3
(D) 2
(E) $f(x)$ has no relative/local minimum
\qquad 4. $f(x)$ has a relative/local maximum at
(A) 1
(B) -1
(C) 3
(D) -2
(E) $f(x)$ has no relative/local maximum
\qquad 5. Which of the following is NOT true about the graph of $f(x)$?
(A) $f(x)$ is continuous at $x=0$
(B) $\lim _{x \rightarrow 2^{-}} f(x)=f(-1)$
(C) $\lim _{x \rightarrow 1} f(x)=D N E$
(D) $f(x)$ has a local max of 2.
(E) $f(x)$ has a local min of -1 at 2 .
\qquad 6. If $h(x)=2 x^{2}+5$, find the average rate of change of $h(x)$ on the interval $x \in[-1,3]$.
(A) $\frac{21}{4}$
(B) $\frac{17}{4}$
(C) 8
(D) $5 \quad$ (E) 4
_7. $\lim _{x \rightarrow \infty} \frac{333+4444 x^{4444}+555 x^{555}}{111 x^{555}+222 x^{444}+333}=$
(A) 555
(B) 5
(C) 0
(D) 3
(E) ∞
-8. Which of the following is true about $f(x)=\frac{2 x^{2}-15 x-8}{x^{3}-7 x^{2}-8 x}$
(A) $f(x)$ has a vertical asymptote at $x=8$
(B) $f(x)$ is an odd function
(C) $\lim _{x \rightarrow-\infty} f(x)=\infty$
(D) $f(x)$ has a hole at $\left(8, \frac{11}{72}\right)$
(E) $f(x)$ has horizontal asymptote at $y=0$
9. The function $f(x)= \begin{cases}3 x+4, & x<-1 \\ 2 & , x=-1 \\ 2 x^{2}-1, & x>-1\end{cases}$
(A) has a jump at $x=-1$
(B) has a hole at $x=-1$
(C) has a VA at $x=-1$
(D) is continuous at $x=-1$
(E) is an even function

Part II: Free Response
Show all work in the space provided. Use proper notation and show all steps. Remember that on this section, your PROCESS is as important as your PRODUCT.

Given
$f(x)=2 x^{2}-2 x-24 \quad g(x)=x^{2}+3 x-28 \quad k(x)=3 x^{9}-7 x^{5}+x^{3}-2 x \quad p(x)=-2 x^{6}+8 x^{4}+1$
10. Let $h(x)=\frac{g(x)}{f(x)}$
(a) Find the domain of $h(x)$.
(b) Find the equation of any vertical asymptote of $h(x)$.
(c) Find the coordinate, (x, y), of any removable point discontinuity of $h(x)$.
(d) Find the equation of any horizontal asymptote of $h(x)$.
(e) Find the coordinate, (x, y), of any x-intercepts of $h(x)$.
11. Let $m(x)=\frac{k(x)}{p(x)}$
(a) Is $m(x)$ is even, odd, or neither. Justify.
(b) Find $\lim _{x \rightarrow \infty} m(x)$
(c) Find the y-intercept of $m(x)$. List it as an ordered pair.

