Date \qquad
TEST: Chapter 3.5-4.2 FORM A, CALCULATOR PERMITTED
I. Multiple Choice: Place the CAPITAL letter of the answer choice in the blank to the left of the number.
\qquad 1. The graph of the function $g(x)=2^{x}$ can be obtained from the graph of $f(x)=8^{x}$ by
(A) Horizontally compressing f by a factor of 3
(B) Horizontally stretching f by a factor of 3
(C) Vertically compressing f by a factor of 3
(D) Vertically stretching f by a factor of 3
(E) None of these

A 2. What is constant percentage decay rate of $P(t)=4.7\left(\frac{1}{5}\right)^{t}$?
(A) 80%
(B) 2%
(C) 20%
(D) 0.8%
(E) 0.2%
\qquad 3. What is the growth factor in the equation $M(t)=3\left(\frac{6}{5}\right)^{t}$?
(A) 3
(B) $\frac{1}{5}$
(C) 20%
(D) 1.2
(E) 120%
\qquad 4. What is the equation of the exponential model, $y=A b^{t}$, t in days, for a quantity that starts with an initial value of 4 , and increases by a factor of 2 every week?
(A) $y=4(2)^{t}$
(B) $y=2^{(t / 7+2)}$
(C) $y=4(3)^{t / 7}$
(D) $y=4\left(\frac{1}{3}\right)^{t / 7}$
(E) $y=4^{(t / 7+2)}$
\qquad 5. What is the equation of the exponential model, $y=A b^{t}, t$ in hours, for a quantity that starts with an initial value of 3.4 , and decreases by 34% every 5 hours?
(A) $y=3.4(0.66)^{t}$
(B) $y=3.4(0.34)^{t}$
(C) $y=3.4(1.34)^{t / 5}$
(D) $y=3.4(0.34)^{t / 5}$
(E) $y=3.4(0.66)^{t / 5}$
\qquad 6. Which of the following is equivalent to the function $f(x)=11^{-x}$?
(A) $g(x)=-\left(\frac{1}{11}\right)^{-x}$
(B) $g(x)=\left(\frac{1}{11}\right)^{-x}$
(C) $g(x)=\frac{-1}{11^{x}}$
(D) $g(x)=-11^{x}$
(E) $g(x)=\frac{1}{11^{x}}$
\qquad 7. If a radioactive substance loses one-third of its mass every 26 days, to the nearest day, for what approximate value of t will 13 percent of the original amount of the substance remain?
(A) 131 days
(B) 48 days
(C) 2 days
(D) 5 days
(E) 76 days
\qquad 8. A population grows according to an exponential model, $y=A \cdot b^{t}$. If the population grew from its original population of 4,000 at $t=0$ to a population of 16,0008 years later at $t=8$. Predict the population at $t=20$.
(A) 100,000
(B) 128,000
(C) 132,000
(D) 145,000
(E) 88,000

E 9. Which of the following are equations of asymptotes for the function $f(x)=\frac{x^{2}+x^{3}-6 x}{(x-3)(x+2)}$?
I. $x=3$
II. $x=-2$
III. $y=x+2$
IV. $y=1$
(A) I only
(B) I \& II
(C) II \& IV
(D) I \& IV
(E) I, II, \& III
II. Free Response: Show all work in the space provided below the horizontal line Use correct units where appropriate. ROUND ALL ANSWERS
10. The number of people at Wassailfest infected with holiday cheer after t minutes is modeled by the function

$$
W(t)=\frac{3456}{1+56 e^{-0.1 t}}
$$

(a) What was the initial number of Wassailers infected with cheer? (round to the nearest person) (b) After how many minutes will the number of in
approximation rounded to the nearest minute.

After how many minutes is the holiday cheer spreading at the fastest rate? (round to the nearest (d) How many Wassailers are infected after 24 minutes? (round to the nearest person)
(e) According the model, what is a reasonable estimation of the number of people who attended Wassailfest?
(f) If the Grinch has a plan to crash the Wassailfest festivities if at least 55% of the Wassailers get infected with the holiday spirit, after how many minutes will he try to implement his sinister
plan? (round to the nearest minute)
\qquad
(a) $W(0)=60.631 \approx 60$ or 61 ppl
(b) $W(t)=660, t=25.816 \approx 25$ or 26 min
(c) $w(t)=1728, t=40.253 \approx 40 \mathrm{~min}$
(d) $W(24)=568.401 \approx 568 \mathrm{ppl}$
(WVITS: 10
(e) 3456 ppl
(f)

$$
\begin{array}{lll}
W(t)=1900.8 \text { or } W(t)=1900 \text { or } W(t)=1901 \\
t=42.260 & t=42.250 & t=42.262 \\
t \approx 42 \mathrm{~min} & t \approx 42 \mathrm{~min} & t \approx 42 \mathrm{~min}
\end{array}
$$

