Chapter 3.5: Rational Functions

A rational number is a ratio of two integers. A rational function is a quotient of two polynomials. All rational numbers are, therefore, rational functions as well.

Let's get reacquainted with an old friend.

Example 1:

Sketch $f(x)=\frac{1}{x}$. Find the domain and range. Find and label all discontinuities. Find the intervals over which the function is increasing and decreasing. Describe any symmetry. Evaluate the following:
$\lim _{x \rightarrow 0^{-}} f(x)$
(b) $\lim _{x \rightarrow 0^{+}} f(x)$
(c) $\lim _{x \rightarrow 0} f(x)$
(d) $\lim _{x \rightarrow 4} f(x)$
(e) $\lim _{x \rightarrow-\infty} f(x)$
(f) $\lim _{x \rightarrow \infty} f(x)$

Definition of a Vertical Asymptote

If $\lim _{f} f(x)= \pm \infty$ or $\lim f(x)= \pm \infty$, then there exists a vertical asymptote at $x=c$.

Definition of a Horizontal Asymptote

$\lim _{x \rightarrow \infty} f(x)=L$ or $\lim _{x \rightarrow-\infty} f(x)=L$ if and only if there exists atorizontal Asymptote (HA) at $y=L$

$y \rightarrow b$ as $x \rightarrow \infty$

$y \rightarrow b$ as $x \rightarrow-\infty$

Example 2:

Sketch a graph of each rational function by a transformation of the parent function $y=\frac{1}{x}$. Identify the domain and range, all asymptotes, and all discontinuities.
(a) $f(x)=\frac{6}{4-2 x}$
(b) $g(x)=\frac{3 x-5}{x+2}$

Example 3:

Sketch the graph of each of the following functions. Identify the domain and range, all asymptotes, and all discontinuities.
a) $r(x)=\frac{5 x+21}{x^{2}+10 x+25}$
b) $R(x)=\frac{x^{2}-3 x-4}{2 x^{2}+4 x}$
c) $f(x)=\frac{4 x^{2}-28 x+48}{3 x^{3}+3 x^{2}-36 x}$

Asymptotic and Discontinuous behavior of Rational Functions
Let R be the rational function

$$
R(x)=\frac{a_{n} x^{n}+a_{n-1} x^{n-1}+\cdots+a_{1} x+a_{0}}{b_{m} x^{m}+b_{m-1} x^{m-1}+\cdots+b_{1} x+b_{0}}
$$

1. The Vertical Asymptotes (non-removable infinite discontinuities) of R are the lines $x=a$, where a is a zero of the denominator but NOT the numerator. That is $R(a)=\frac{\neq 0}{0}$.
2. The Holes (removable point discontinuities) of R are the points $\left(b, \lim _{x \rightarrow b} R(x)\right)$, where b is a zero of BOTH the numerator and denominator. That is $R(b)=\frac{0}{0}$
3. NOTE: If $R(c)=\frac{0}{\neq 0}=0$, then $x=c$ is a zero/ x-intercept/root of $R(x)$.
4. (a) if $n<m$, then $\lim _{x \rightarrow \infty} R(x)=0$ and R has an HA at $y=0$.
(b) if $n=m$, then $\lim _{x \rightarrow \infty} R(x)=\frac{a_{n}}{b_{m}}$, and R has an HA at $y=\frac{a_{n}}{b_{m}}$
(c) if $n>m$, then $\lim _{x \rightarrow \infty} R(x)=\infty$ or $\lim _{x \rightarrow \infty} R(x)=-\infty$, and R has no HA.

A horizontal asymptote is an example of an end-behavior model. There are other types of end-behavior models that can be found the same way-analyzing the leading coefficients in the numerator and denominator. The behavior of the end-behavior model and the original function will be the same as $x \rightarrow \infty$ and as $x \rightarrow-\infty$, although the local behavior (for small x-values) will be different.

Example 4:

Identify the leading term in the end behavior model of the following rational functions. Based on the endbehavior model, determine $\lim _{x \rightarrow \infty} f(x)$ and $\lim _{x \rightarrow-\infty} f(x)$.
(a) $f(x)=\frac{4 x^{2}-2 x+11 x^{3}+4}{7-4 x}$
(b) $f(x)=\frac{3 x^{3}-4 x^{5}-\pi x^{2}+4 x}{3 x-11 x^{2}+26.2}$
(c) $f(x)=\frac{85 x^{99}+38 x^{47}+8 x^{33}+4 x}{77 x^{4}+1492 x^{88}-5 x^{98}-111}$

Example 5:

Find the domain, end behavior, and all discontinuities. Sketch the function. Find the range. Use long division to find the equation of the end-behavior model. Verify each on the calculator, then zoom out to see the end behavior.
(a) $f(x)=\frac{x^{3}-16 x}{2 x^{2}+6 x-8}$
(b) $f(x)=\frac{\left(x^{2}-1\right)\left(x^{2}-3 x+3\right)}{x^{2}-3 x+2}$

Example 6:

Analyze the graphs of the following rational functions:
(a) $f(x)=\frac{2 x^{2}-18}{x^{2}-4}$
(b) $h(x)=\frac{x^{2}+x}{x}$
(c) $j(k)=\frac{2 x^{2}-2}{x^{2}-3 x+2}$
(d) $p(x)=\frac{x}{x^{2}-3 x}$
(e) $Q(x)=\frac{2 x^{3}-18 x}{x^{3}-4 x}$
(f) $g(x)=\frac{\left(x^{2}-2 x+4\right)(x-6)}{x^{2}-8 x+12}$

Example 7:

Construct the equation (in factored form) of a holey graph with holes at $x=1, x=5$, and $x=-4, x$ intercepts at $x=2$ and $x=-6$, a vertical asymptotes at $x=3$ and $x=6$ with a horizontal asymptote at $y=\frac{2}{3}$.

Here's a quick summary of how to analyze rational functions:

1. Factor: Factor both the numerator and denominator
2. Domain: Find the values that make the denominator zero. This will be domain restrictions.
3. Discontinuities: $\frac{\neq 0}{0}$ means "VA." $\frac{0}{0}$ means "hole."
4. Bad Guy: Divide out any "bad guy" factors causing a hole. Use the equation that remains for all further analysis, including the y-value of the hole.
5. End Behavior: Find $\lim _{x \rightarrow \infty} f(x)$ and $\lim _{x \rightarrow-\infty} f(x)$. Graph all HA's and SA's.
6. Intercepts: Find the x-intercepts by determining the zeros of the numerator, and the y-intercept from the value of the function at $x=0$.
7. Symmetry: even, odd or neither
8. Sketch the Graph: Graph all asymptotes first, intercepts next, then combine the other information to fill in the rest of the graph.
9. Smile: Pat yourself on the back for a job well done!

Example 8

Graph the rational function $m(x)=\frac{5 x^{2}+21 x}{x^{3}+10 x^{2}+25 x}$

Example 9:

Graph the rational function $L(x)=\frac{\left(x^{2}-4 x-5\right)(x+2)}{x^{2}-x-6}$

Example 10:

Write an equation of a function with a VA at $x=-\frac{1}{2}$, an SA at $y=-3 x-2$, a y-intercept at 4 , and a hole at $x=500$. Find the end behaviors of this function. As $x \rightarrow \infty$, what do the slopes of the function approach?

Example 11:

Suppose that the rabbit population on Mr. Korpi's Hairy Hare farm follows the formula

$$
P(t)=\frac{3000 t}{t+1}
$$

Where $t \geq 0$ is the time (in months) since the beginning of the year.

(a) Draw a graph of the rabbit population on the relevant domain.
(b) According the model, what is the initial population of the rabbits? How can this be??
(c) Using a calculator, what will the rabbit population be after 5.5 months?
(d) Using a calculator, after how many months will the rabbit population be at 1066 rabbits?
(e) According to the math model, what eventually happens to the rabbit population, in the long run?

