Chapter 6.3: Composite Identities

Have you ever wanted to do something, but you didn't think it was right?
Perhaps you wanted to say that $\ln (a+b)$ was equal to $\ln a+\ln b$. Of course it is not equal.

If you were asked to "expand" the expression $\cos (x+y)$, would you be tempted to say it was $\cos x+\cos y$? I hope your answer is "No!"

There is a way to do it, but not by "distributing" the cosine. The angle $x+y$ is called a composite angle, because it combines two angles x and y to form a new angle.

Composite Identities for Cosine

$$
\begin{aligned}
& \cos (x+y)=\cos x \cos y-\sin x \sin y \\
& \cos (x-y)=\cos x \cos y+\sin x \sin y
\end{aligned}
$$

Notice the sign change. We can summarize both as

$$
\cos (x \pm y)=\cos x \cos y \mp \sin x \sin y
$$

Example 1:

Find the simplified, exact value of $\cos 15^{\circ}$ by finding two angles from the Unit Circle that either add or subtract to give 15°. Verify on your calculator.

Exact values of trig ratios of any angle that is a multiple of 15° or $\frac{\pi}{12}$ radians can be found using a composite of Unit Circle angles.

Example 2:

Find the simplified, exact value of $\cos \frac{7 \pi}{12}$ by finding two angles from the Unit Circle that either add or subtract to give $\frac{7 \pi}{12}$. Verify on your calculator.

Example 3:

Using the cofunction identity $\sin x=\cos \left(\frac{\pi}{2}-x\right)$, derive an identity for $\sin (x+y)$.

Composite Identities for Sine

$$
\begin{aligned}
& \sin (x+y)=\sin x \cos y+\sin y \cos x \\
& \sin (x-y)=\sin x \cos y-\sin y \cos x
\end{aligned}
$$

Notice the sign does NOT change. We can summarize both as

$$
\sin (x \pm y)=\sin x \cos y \pm \sin y \cos x
$$

Example 4:

Use the composite identities to prove the following cofunction identity:

$$
\sin \left(\frac{\pi}{2}-x\right)=\cos x
$$

Example 5:

Find the simplified, exact value of $\sin \frac{35 \pi}{12}$ by finding two angles from the Unit Circle that either add or subtract to give $\frac{35 \pi}{12}$ (or an angle coterminal with it). Verify on your calculator.

Example 6:

Write each of the following as the sine or cosine of a single angle:
(a) $\sin 22^{\circ} \cos 13^{\circ}+\cos 22^{\circ} \sin 13^{\circ}$
(b) $\sin x \sin 2 x-\cos x \cos 2 x$

Composite Identities for Tangent

$$
\tan (x \pm y)=\frac{\sin (x \pm y)}{\cos (x \pm y)} \quad \text { or } \quad \tan (x \pm y)=\frac{\tan x \pm \tan y}{1 \mp \tan x \tan y}
$$

Example 7:

Find the simplified, rationalized, exact value of $\tan \frac{5 \pi}{12}$ using BOTH of the identities above. Verify on your calculator.

Example 8:

Prove the following identities:
(a) $\tan \left(\theta+\frac{\pi}{4}\right)=\frac{1+\tan \theta}{1-\tan \theta}$
(b) $\sin (x-y)+\sin (x+y)=2 \sin x \cos y$

Example 9:

Prove the following identity:

$$
\sin 3 u=3 \cos ^{2} u \sin u-\sin ^{3} u
$$

