Period Name Date

Worksheet 2.2—Limits & Continuity

Give simplified, exact values for all answers. No Calculator is Permitted.

I. Multiple Choice

- 1. Suppose $\lim_{x\to 5} f(x) = 4$. Which of these statements must be true?
 - I. The range of f contains 4.
 - II. f(5) = 4
 - III. As x approaches 5 from the left, f(x) approaches 4.
 - (A) II only
- (B) III only
- (C) I and III only (D) I, II, and III only (E) None of them

Use the graph of f(x) at right to answer questions 2 through 6.

- 2. Determine $\lim_{x\to 2^-} f(x)$.
 - (A) 0

- (B) 3 (C) -4 (D) $\frac{3}{2}$ (E) DNE

3. Determine $\lim_{x\to 2^+} f(x)$.

- (A) 0
- (B) 3 (C) -4 (D) $\frac{3}{2}$
- (E) DNE

- (A) 0

- (B) 3 (C) -4 (D) $\frac{3}{2}$
- (E) DNE

- 5. Determine $\lim_{x\to -5} f(x)$.
- (B) 8
- (C) 0(D) 6
- (E) DNE

- 6. Determine f(-5).
- (A) 4
- (B) 8
- (C) 0
- (E) DNE (D) 6
- 7. The graph of a function f(x) is shown at right. Use the graph to determine all the values of x at which f fails to be continuous on the open x-interval $x \in (-8,8)$.

$$(B) -1, 3$$

$$(C) -5, -1$$

(D)
$$-5$$
 -1 3

(D) -5, -1, 3 (E) f is continuous everywhere

8. Evaluate
$$\lim_{x \to \infty} \frac{-4x^2 + 3x^5 + 1}{-7x^5 + x^2 + 2}$$

(A) 0 (B)
$$-\frac{3}{7}$$
 (C) $\frac{4}{7}$ (D) ∞ (E) $-\infty$

(B)
$$-\frac{3}{7}$$

(C)
$$\frac{4}{7}$$

9. Evaluate $\lim_{x \to -\infty} \frac{-5x^7 - 8x^5 + 2}{-3x^6 - x^3 + x^2}$

(B)
$$\frac{5}{3}$$

(A) 0 (B)
$$\frac{5}{3}$$
 (C) $-\frac{5}{3}$ (D) ∞ (E) $-\infty$

__ 10. Evaluate $\lim_{x\to -5^+} \frac{-2}{x+5}$ (you might want t sketch a graph first.)

(B)
$$-2$$

(A) 0 (B)
$$-2$$
 (C) $-\frac{1}{5}$ (D) ∞ (E) $-\infty$

II. Short Answer

11. Given the graph of f(x) at right, for each of the following, use the 3-step definition of continuity at a point to determine if the function is continuous at the indicated point. Be sure to show the analysis of all 3 steps, with correct notation, and a complete sentence at the end stating your conclusion with justification.

(a) at
$$x = 0$$

(c) at
$$x = 4$$

12. For the function R whose graph is shown below, state the following:

- (a) $\lim_{x\to 2} R(x)$
- (b) $\lim_{x\to 5} R(x)$
- (c) $\lim_{x \to -3^{-}} R(x)$
- (d) $\lim_{x \to -3^+} R(x)$
- (e) $\lim_{x \to -3} R(x)$
- 13. For each function, f(x), determine (i) $\lim_{x \to \infty} f(x)$ (ii) $\lim_{x \to \infty} f(x)$ (iii) any equations of HA's

 (a) $f(x) = \frac{-5x+1}{x+7x^2+4}$ (b) $f(x) = \frac{3x^6-2x^3+\pi}{8-9x^4}$ (c) $f(x) = 6x^2-100x-5000$

(a)
$$f(x) = \frac{-5x+1}{x+7x^2+4}$$

(b)
$$f(x) = \frac{3x^6 - 2x^3 + \pi}{8 - 9x^4}$$

(c)
$$f(x) = 6x^2 - 100x - 5000$$

(d)
$$f(x) = 3 - 2x^3$$

(d)
$$f(x) = 3 - 2x^3$$
 (e) $f(x) = \frac{12x + 17 - 53x^2}{x^2 + 22x - 114}$ (f) $f(x) = -4\sqrt{x + 7}$

(f)
$$f(x) = -4\sqrt{x+7}$$

15. Determine of the following functions are continuous at the indicated point. Show the work that leads to your answer using correct notation and give a reason for your answer. Justify by sketching a graph of each function.

(a)
$$f(x) = \begin{cases} 2x^2 - 3x, & x \le -1 \\ 2 - 4x, & x > -1 \end{cases}$$
 at $x = -1$

(b)
$$g(x) = \begin{cases} \sqrt{5-x}, & x < 1 \\ 3x^2 + 1, & x \ge 1 \end{cases}$$
 at $x = 1$

The graph of y = f(x) is given below. Answer questions 15-23 below.

$$17. \lim_{x \to 1} f(x) =$$

18.
$$f(1) =$$

$$19. \quad \lim_{x \to 4^{-}} f(x) =$$

$$20. \quad \lim_{x \to 4^+} f(x) =$$

$$21. \lim_{x \to 4} f(x) =$$

22.
$$f(4) =$$

$$23. \lim_{x \to \infty} f(x) =$$

24. Draw the graph of a function f(x) on the interval $-\infty < x \le 7$ with the following characteristics. (Answers will, and should, vary verily).

$$\lim_{x \to -10^{-}} f(x) = -2 = \lim_{x \to -10^{+}} f(x), \ f(-10) = 2, \ \lim_{x \to 0^{-}} f(x) = -\infty, \ \lim_{x \to 0^{+}} f(x) = \infty$$

$$\lim_{x \to 5^{-}} f(x) = 0 = f(5), \ \lim_{x \to 5^{+}} f(x) = 4, \ f(7) = 4, \ \lim_{x \to \infty} f(x) = 0$$