Name \qquad Date \qquad Period \qquad

Worksheet 2.2—Limits \& Continuity

Give simplified, exact values for all answers. No Calculator is Permitted.

I. Multiple Choice

\qquad 1. Suppose $\lim _{x \rightarrow 5} f(x)=4$. Which of these statements must be true?
I. The range of f contains 4 .
II. $f(5)=4$
III. As x approaches 5 from the left, $f(x)$ approaches 4.
(A) II only
(B) III only
(C) I and III only
(D) I, II, and III only
(E) None of them

Use the graph of $f(x)$ at right to answer questions 2 through 6.
\qquad 2. Determine $\lim _{x \rightarrow 2^{-}} f(x)$.
(A) 0
(B) 3
(C) -4
(D) $\frac{3}{2}$
(E) DNE
\qquad 3. Determine $\lim _{x \rightarrow 2^{+}} f(x)$.
(A) 0
(B) 3
(C) -4
(D) $\frac{3}{2}$
(E) DNE
\qquad 4. Determine $\lim _{x \rightarrow 2} f(x)$.
(A) 0
(B) 3
(C) -4
(D) $\frac{3}{2}$
(E) DNE

\qquad 5. Determine $\lim _{x \rightarrow-5} f(x)$.
(A) 4
(B) 8
(C) 0
(D) 6
(E) DNE
\qquad 6. Determine $f(-5)$.
(A) 4
(B) 8
(C) 0
(D) 6
(E) DNE
\qquad 7. The graph of a function $f(x)$ is shown at right. Use the graph to determine all the values of x at which f fails to be continuous on the open x-interval $x \in(-8,8)$.
(A) $-5,3$
(B) $-1,3$
(C) $-5,-1$
(D) $-5,-1,3$
(E) f is continuous everywhere

_8. Evaluate $\lim _{x \rightarrow \infty} \frac{-4 x^{2}+3 x^{5}+1}{-7 x^{5}+x^{2}+2}$
(A) 0
(B) $-\frac{3}{7}$
(C) $\frac{4}{7}$
(D) ∞
(E) $-\infty$

- 9. Evaluate $\lim _{x \rightarrow-\infty} \frac{-5 x^{7}-8 x^{5}+2}{-3 x^{6}-x^{3}+x^{2}}$
(A) 0
(B) $\frac{5}{3}$
(C) $-\frac{5}{3}$
(D) ∞
(E) $-\infty$
\qquad 10. Evaluate $\lim _{x \rightarrow-5^{+}} \frac{-2}{x+5}$ (you might want t sketch a graph first.)
(A) 0
(B) -2
(C) $-\frac{1}{5}$
(D) ∞
(E) $-\infty$

II. Short Answer

11. Given the graph of $f(x)$ at right, for each of the following, use the 3 -step definition of continuity at a point to determine if the function is continuous at the indicated point. Be sure to show the analysis of all 3 steps, with correct notation, and a complete sentence at the end stating your conclusion with justification.
(a) at $x=0$
(b) at $x=2$
(c) at $x=4$

12. For the function R whose graph is shown below, state the following:

(a) $\lim _{x \rightarrow 2} R(x)$
(b) $\lim _{x \rightarrow 5} R(x)$
(c) $\lim _{x \rightarrow-3^{-}} R(x)$
(d) $\lim _{x \rightarrow-3^{+}} R(x)$
(e) $\lim _{x \rightarrow-3} R(x)$
13. For each function, $f(x)$, determine (i) $\lim _{x \rightarrow-\infty} f(x)$ (ii) $\lim _{x \rightarrow \infty} f(x) \quad$ (iii) any equations of HA's
(a) $f(x)=\frac{-5 x+1}{x+7 x^{2}+4}$
(b) $f(x)=\frac{3 x^{6}-2 x^{3}+\pi}{8-9 x^{4}}$
(c) $f(x)=6 x^{2}-100 x-5000$
$\begin{array}{ll}\text { (d) } f(x)=3-2 x^{3} & \text { (e) } f(x)=\frac{12 x+17-53 x^{2}}{x^{2}+22 x-114}\end{array}$
(f) $f(x)=-4 \sqrt{x+7}$
14. Determine of the following functions are continuous at the indicated point. Show the work that leads to your answer using correct notation and give a reason for your answer. Justify by sketching a graph of each function.
(a) $f(x)=\left\{\begin{array}{ll}2 x^{2}-3 x, & x \leq-1 \\ 2-4 x, & x>-1\end{array}\right.$ at $x=-1$
(b) $g(x)=\left\{\begin{array}{ll}\sqrt{5-x}, & x<1 \\ 3 x^{2}+1, & x \geq 1\end{array}\right.$ at $x=1$

The graph of $y=f(x)$ is given below. Answer questions 15-23 below.
15. $\lim _{x \rightarrow 1^{-}} f(x)=$
16. $\lim _{x \rightarrow 1^{+}} f(x)=$
17. $\lim _{x \rightarrow 1} f(x)=$
18. $f(1)=$
19. $\lim _{x \rightarrow 4^{-}} f(x)=$
20. $\lim _{x \rightarrow 4^{+}} f(x)=$
21. $\lim _{x \rightarrow 4} f(x)=$
22. $f(4)=$

23. $\lim _{x \rightarrow \infty} f(x)=$
24. Draw the graph of a function $f(x)$ on the interval $-\infty<x \leq 7$ with the following characteristics.
(Answers will, and should, vary verily).
$\lim _{x \rightarrow-10^{-}} f(x)=-2=\lim _{x \rightarrow-10^{+}} f(x), f(-10)=2, \lim _{x \rightarrow 0^{-}} f(x)=-\infty, \lim _{x \rightarrow 0^{+}} f(x)=\infty$
$\lim _{x \rightarrow 5^{-}} f(x)=0=f(5), \lim _{x \rightarrow 5^{+}} f(x)=4, f(7)=4, \lim _{x \rightarrow-\infty} f(x)=0$

