Name \qquad Date \qquad Period \qquad

Worksheet 8.2-The Integral

Show all work on a separate sheet of paper. No Calculator unless otherwise specified.
For the following graphs of functions $y=f(x)$, evaluate geometrically. Be sure to sketch the graph and identify the region. Verify 1,2 , and 3 by using the FTOC.

1. $\int_{-2}^{3} 4 d x$
2. $\int_{0}^{2}(4-2 x) d x$
3. $\int_{0}^{1}(2 x+3) d x$
4. $\int_{0}^{3} \sqrt{9-x^{2}} d x$ (a semicircle)

Find the area of the indicated region by setting up a definite integral, then using the FTOC. Be sure to sketch the graph and identify the region. Bounded by ...
5. $y=e^{x}$ and $y=0$ from $x=\ln 2$ to $x=\ln 7$
6. $f(x)=x^{-1}+3$ and the x-axis on the interval $x \in[1,4]$
7. $g(x)=2 x^{3}+3 x^{2}+1, x=0$, and $x=1$
8. $y=\sin t, y=0, \frac{\pi}{6} \leq t \leq \frac{2 \pi}{3}$

Evaluate the following indefinite integrals by finding the general antiderivative. Don't forget your $+C$. You may have to simplify/rewrite prior to integrating.
9. $\int\left(4 \sqrt{x}-\frac{5}{4} \sqrt[3]{x}+\frac{2}{\sqrt[4]{x^{5}}}\right) d x$
10. $\int 2 x^{2}(3 x-1)^{2} d x$
11. $\int\left(\frac{x \sin x-6 x e^{x}+2 \sqrt[4]{x}+1}{x}\right) d x$

Challenge yourself by trying to evaluate the following indefinite integrals. Don't forget your $+C$. Check your answers by differentiating.
12. $\int \cos (2 x) d x$
13. $\int(5 x-7)^{10} d x$
14. If $f^{\prime}(x)=x e^{x^{2}}$, find the general antiderivative $f(x)$.

A particular solution to an indefinite integral (or differential equation) has a unique value of C. To find this value of C, we need a point through which the graph of our particular solution passes. This given point is called an initial condition. Once the particular solution is found, other points on the graph of the solution curve can be found.
15. (a) Sketch the graph of the differential function $y^{\prime}=2+\frac{1}{x^{2}}$ on the interval $x \in[0,3]$
(b) Find the particular solution to the differential equation $y^{\prime}=2+\frac{1}{x^{2}}$ by setting up and evaluating an indefinite integral.
(c) If $y(1)=6$, find the particular solution to the differential equation from part (b).
(d) Find the equation of the tangent line for the function $y=f(x)$ from part (c) at $x=1$.
(e) Evaluate $y(2)$ using your particular solution from part (c).
(f) Approximate $y(2)$ by using the tangent line equation from part (d). Can you explain why this number is different but similar to your answer from part (e)?
(g) Finally, evaluate the integral expression: $6+\int_{1}^{2}\left(2+\frac{1}{x^{2}}\right) d x$. What do you notice? How does it compare to your answer from part (e)? Can you explain this geometrically? Try. Write down your thoughts and draw a picture, if necessary, to aid your explanation.

