Name

Date

Period

Worksheet 2.5—Building Functions from other Functions

Give simplified, exact values for all answers. No Calculator is Permitted unless specifically stated.

I. Multiple Choice

_1. If the point (3,4) lies on the graph of an invertible function f, then which of the following points lies on the graph of its inverse?

- (A) (4,3) (B) (3,-4) (C) $\left(3,\frac{1}{4}\right)$ (D) $\left(-3,4\right)$ (E) None of these

2. The inverse of the function f(x) = 7x + 8 will be

(A) $g(x) = \frac{x-8}{7}$ (B) $g(x) = \frac{1}{7x+8}$ (C) $g(x) = \frac{8}{x-7}$ (D) g(x) = -7x-8 (E) $g(x) = -\frac{1}{7}x+8$ y = 7x + 8 x = 7y + 8 x = 3y + 8 x = 3y + 8

 $\underline{\underline{\hspace{0.5cm}}}$ 3. If $f(x) = \sqrt{x}$ and $g(x) = x^2$, then $(gf)(x) = x^2$ (A) $\frac{\sqrt{x}}{x}$ (B) |x| (C) $x^{5/2}$ (D) x (E) $\frac{x}{\sqrt{x}}$ $(gf)(x) = \sqrt[4]{x} \cdot x^{2}$ $= x^{4/2} x^{2}$ $= x^{5/2}$

4. If $f(x) = \sqrt{x}$ and $g(x) = x^2$, then $(g \circ f)(x) =$

 $(q \circ f)(\chi) = (\sqrt{\chi})^{\frac{1}{2}}$ (A) $\frac{\sqrt{x}}{r}$ (B) |x| (C) $x^{5/2}$ (D) x (E) $\frac{x}{\sqrt{x}}$ $=\left(\chi^{1/2}\right)^{2}$

6. Suppose
$$f$$
 and g are functions with domain of all real numbers. Which of the following is NOT necessarily true? $f + g = g + f$ $f \cdot g = g \cdot f$ (A) $(f + g)(x) = (g + f)(x)$ (B) $(fg)(x) = (gf)(x)$ (C) $f(g(x)) = g(f(x))$ (D) $(f - g)(x) = -(g - f)(x)$ (E) $(f \circ g)(x) = f(g(x))$ $= -(f - f + g)$

7. If f(x) = x - 7 and $g(x) = \sqrt{4 - x}$, what is the domain of $\frac{f}{g}$? (A) $\left(-\infty,4\right)$ (B) $\left(-\infty,4\right]$ (C) $\left(4,\infty\right)$ (D) $\left[4,\infty\right)$ (E) $\left(4,7\right)\cup\left(7,\infty\right)$

(A)
$$(-\infty, 4)$$

(B)
$$\left(-\infty,4\right]$$

$$(C) (4,\infty)$$

(D)
$$[4,\infty]$$

(E)
$$(4,7) \cup (7,\infty)$$

$$\frac{f}{g} = \frac{\chi - 1}{\sqrt{4 - \chi}} \qquad 4 - \chi > 0$$

$$= \frac{\chi - 1}{\sqrt{4 - \chi}} \qquad -\chi > -\frac{4}{\sqrt{4 - \chi}}$$

$$= \frac{\chi - 1}{\sqrt{4 - \chi}} \qquad \chi < \frac{4}{\sqrt{4 - \chi}}$$

$$= \frac{\chi - 1}{\sqrt{4 - \chi}} \qquad \chi < \frac{4}{\sqrt{4 - \chi}}$$

$$= \frac{\chi - 1}{\sqrt{4 - \chi}} \qquad \chi < \frac{4}{\sqrt{4 - \chi}}$$

(A)
$$2x^2 + 2$$

(B)
$$2x^2 + 1$$

(C)
$$x^4 + 1$$

(A)
$$2x^2 + 2$$
 (B) $2x^2 + 1$ (C) $x^4 + 1$ (D) $x^4 + 2x^2 + 1$ (E) $x^4 + 2x^2 + 2$

(E)
$$x^4 + 2x^2 + 3$$

$$(f \circ f)(x) = (\chi^{2} + 1)^{2} + 1$$

$$= \chi^{4} + 2\chi^{2} + 1 + 1$$

$$= \chi^{4} + 2\chi^{2} + 2$$

(A)
$$y = x$$

(B)
$$y = \sqrt{x^2}$$

$$(C) y^3 = x^3$$

(A)
$$y = x$$
 (B) $y = \sqrt{x^2}$ (C) $y^3 = x^3$ (D) $y = (\sqrt{x})^2$ (E) $x = |y|$

(E)
$$x = |y|$$

Precal Matters WS 2.5: Building Funcs

10. Let $h(x) = \frac{4x+5}{2x-7}$ and f(x) = x+6. If $h(x) = (g \circ f)(x)$, then g(x) is ?? $(\sqrt{\frac{4x+1}{2x-13}}) \times \sqrt{\frac{4x-1}{2x+13}} \times (C) \frac{4x-5}{2x-7} \times (D) \frac{4x-19}{2x-5} \times (E) \text{ None of these}$ $(\sqrt{\frac{4x+1}{2x-13}}) \times \sqrt{\frac{4x+1}{2x+13}} \times (C) \frac{4x-5}{2x-7} \times (D) \frac{4x-19}{2x-5} \times (D) \frac{$

II. Short Answer

11. If $f(x) = \sqrt{x+3}$ and $g(x) = \sqrt{x-4}$, find formulas for $h = : \frac{f}{g}, \frac{g}{f}, f+g, f \circ g$, and $g \circ f$. Give the domain of each.

Give the domain of each.

$$\frac{f}{9} = \sqrt{x+2}$$

$$\sqrt{x+2}$$

$$\sqrt{x+3}$$

$$\sqrt{x+3} = \sqrt{x+3}$$

$$\sqrt{x+3} = \sqrt{x+3$$

12. For each of the following, find f(g(x)) and g(f(x)). Find the domain of each and decide if fand g are inverses. Give an explanation for your answers.

and g are inverses. Give an explanation for your answers.

(a)
$$f(x) = \frac{1}{x-1}$$
, $g(x) = \sqrt{x}$

(b) $f(x) = \frac{1}{x+1}$, $g(x) = \frac{1}{x-1}$

$$f(g(x)) = \frac{1}{\sqrt{x-1}}, g(f(x)) = \frac{1}{\sqrt{x-1}}, g(x) = \frac{1}{x-1}$$

$$f(g(x)) = \frac{1}{\sqrt{x-1}}, g(f(x)) = \frac{1}{\sqrt{x-1}}, g(x) = \frac{1}{x-1}$$

$$f(g(x)) = \frac{1}{\sqrt{x-1}}, g(x) = \frac{1}{x-1}, g(x) = \frac{1}{x-1}$$

$$f(g(x)) = \frac{1}{\sqrt{x-1}}, g(x) = \frac{1}{x-1}, g(x) =$$

13. Decompose each of the following functions h into two functions f and g such that h(x) = f(g(x)). Find two, different, non-trivial decompositions.

(a)
$$h(x) = \sqrt{x^2 - 5x}$$
 (b) $h(x) = \frac{3}{x^3 - 5x + 6}$ (c) $h(x) = \sqrt{x + e^{\sqrt{x}}}$

Answers will vary

14. Assume *f* is a one-to-one function.

(a) If
$$f(2)=9$$
, find $f^{-1}(9)$
(2.19) (9.2)

(a) = 9, find
$$f^{-1}(9)$$
 (b) If $f^{-1}(-3) = 1$, find $f(1)$ (7,2) (-3,1) (1,3)

$$(-3,1)$$
 $(1,3)$
 $f(1)=3$

(c) if
$$f(x) = 5 - 2x$$
, find $f^{-1}(-3)$

$$y = 5 - 2x$$

$$x = 5 - 2y$$

$$y = \frac{x - 5}{-2}$$

$$y = \frac{x - 5}{-2}$$

$$f^{-1}(y) = \frac{x - 5}{-2}$$

$$= 4$$

$$f^{-1}(q) = 2$$

15. Find the inverse, g(x), of the following functions, then compose the functions to verify.

(a)
$$f(x) = (2-x^3)^5$$

 $y = (2-x^3)^5$
 $(x) = (2-y^3)^5$
 $y = (2-(-x^4-2)^5)^5$
 $(x) = (2-y^3)^5$
 $(x) = (2-(-x^4-2)^5)^5$
 $(x) = (2-(-x^4-2)$

(b)
$$f(x) = \frac{2-7x}{3x-1}$$

 $y = \frac{2-7x}{3x-1}$
 $y = \frac{2-7x}{3x-1}$

16. The following functions are not one-to-one. Restrict each's domain so that the resulting function IS one-to-one. Write an equation for each graph (assume no dilations), then find the equation of the inverse function under the restricted domain.

(b)

D:
$$\{x \mid x \ge -2\}$$

$$= (x + 2)$$

$$= (x + 2)^{2}$$

$$= (y + 2)^{2}$$

$$= y + 2$$

$$= y + 2$$

$$= y + 3$$

$$(x + 3) = y$$

17. Use the graph of each function, f, to sketch the graph of f^{-1} . Assume the scales are square.

(a

(b)

- 18. Korpicello's Pizza charges a base price of \$5 for a large pizza, plus \$2 for each topping.
 - a. Write and equation for the total cost, C, of a large pizza with n toppings.
 - b. Find the equation for $C^{-1}(n)$, the inverse function of C(n).
 - c. What is practical interpretation (or what is the usefulness) of $C^{-1}(n)$?
 - d. What are *your* favorite toppings? If you only had \$10 to spend, how many, and which, toppings would you/could you get?

a) ((n)=2n+5) C=2n+5n=2c+5

$$n-5 = 2c$$

 $C = \frac{n-5}{2}$

b)
$$C'(n) = n-5$$

C) To find how many toppings you could

$$D) (-1(10) = \frac{10-5}{2}$$

- 5 topping