Glencoe Geometry Chapter 5.4 \& 5.5

The Triangle Inequality

By the end of this lesson, you should be able to 1. Recognize and apply relationships be twee en sides and angles in a triangle.
2. Apply the Triangle Inequality The orem

We le arne previously that if sides in a triangle were congruent, then the angles opposite those sides are also congruent (and vice-versa).

There are also important relationships that deal with unequal quantities. Today, we will examine two of these relationships.

The first relationship involves the lengths of the sides of a triangle in relation to the triangle's angles.

Theorem:

In a triangle, the longest side is across from the largest angle. The shortest side is across from the shortest angle. The "middle" side is across from the "middle" angle.

Example:

Suppose we want to know which side of this triangle is the longest.

```
Before we can utilize our theorem, we need to know
the size of <\mathcal{B}. We know that the 3 angles of the
triangle add up to 180.
80+40+x=180
    120+x=180
        x = 60
```


We have now found that $\langle\mathcal{B}$ me assures 60. According to our theorem, the longest side will be across from the largest angle.
\mathcal{N} Now that we know the measures of all 3 angles, we can tell that $\langle\mathcal{A}$ is the largest. This means the side across from $\angle \mathcal{A}$, side $C \mathcal{B}$, is the longest.

The second relationship involves the lengths of the sides of a triangle.

Theorem: The Triangle Inequality

The sum of the lengths of any two sides of a triangle must be greater than the third side.

Example:

Suppose we know the lengths of two sides of a triangle, and we want to find the possible lengths of the third side.

Putting these statements together we get that x must be greater than 4, but less than 14. So any number in the range $4<x<14$ can represent the length of the missing side of our triangle.

While there are other inequality relationships in a triangle, these two relationships are the ones most commonly used. Be sure that you learn these two relationships and you'll be set!

RAPID FIRE!!

1. Which of the following could represent the lengths of the sides of a triangle?
A. 1, 2, 3
B. $6,8,15$
C. $5,7,9$
2. Two sides of an is osceles triangle measure 3 and 7. Which of the following could be the measure of the third side?
A. 9
B. 7
C. 3
3. In triangle $\mathcal{A B C}, m<\mathcal{A}=30$ and $m<\mathcal{B}=50$. Which is the longest side of the triangle?
A. $\overline{A B}$
B. $\overline{A C}$
C. $\overline{B C}$
4. In triangle $\mathcal{D E F}$, an exterior angle at \mathcal{D} measures 170 , and $m<E=80$. Which is the longest side of the triangle?

$$
\begin{array}{lll}
\mathcal{A} \cdot \overline{E F} & \mathcal{B} \cdot \overline{D F} \quad \text { C. } \overline{D E}
\end{array}
$$

5. In triangle $\mathcal{A B C}, m<C=55$, and $m<C>m<\mathcal{B}$. Which is the longest side of the triangle? $\begin{array}{lll}\mathcal{A} \cdot \overline{A B} & \mathcal{B} \cdot \overline{A C} & \text { C. } \overline{B C}\end{array}$

Challenging problems.

1. In $\Delta \mathcal{G} \mathcal{H} I, m<G=6 \chi-3, m<\mathcal{H}=10 \chi+8$, and $m<I=49-2 \chi$. Which inequality shows the relationship betwe en the lengths of the sides of the triangle?
A. $\mathcal{G H}>\mathcal{G} I>\mathcal{H I}$
B. $\mathcal{G} I>G \mathcal{H}>\mathcal{H} I$
C. $\mathcal{G H}<\mathcal{H} I<G I$
D. $\mathcal{G H}<\mathcal{G} I<\mathcal{H} I$
2. $\triangle \mathcal{P Q} \mathcal{R}$ frs vertices at $\mathscr{P}-4,6), Q(4,5)$, R(-2,-3). Which angle fins the smallest me asure?
 A. \mathcal{N} ot enough information B. $<\mathbb{P}$
C. $\&$
D. $<\mathcal{R}$

Say What??!!

The early Egyptians used to make triangles by using a rope with Knots tied at equal intervals. Each vertex of the triangle had to occur at a knot. S oppose you had a rope with exactly 10 Knots making 9 equal lengths as shown below. How many different triangles could you make?
A. 2
B. 3
C. 5
D. 4

\mathcal{X}	y	z	Triangle?
1	1	7	$\mathcal{N} 0$
1	2	6	$\mathcal{N} 0$
1	3	5	$\mathcal{N} 0$
1	4	4	Yes
2	2	5	$\mathcal{N} 0$
2	3	4	Yes
3	3	3	Yes

PLAN: Let x, y, and z be the length of each side. Check every possible combination of $x+y+z=9$ to see fowmany can be made into triangles. A table can help us keep track of the combinations.

