Glencoe Geomet ry Chapter 6.1\& 10.1

Parallelograms \&

Tessellations

By the end of this lesson, you should be able to 1. Recognize and apply properties of parallelograms.
2. Recognize beautiful tessellations.
\mathcal{N} o more triangles today!! However, triangles belong to a larger family of closed, 2 .
dimensional geometric shapes consisting of a collection of line segments joined at their ends called__polygons____.

Today we are kicking it up a notch as we begin our study of four.
sided polygons called
--quadrilaterals__-_.
There are many types of four-sided shapes, but today we are looking at a very special type.

Parallelogram -a quadrilateral with both pairs of opposite sides parallel to each other.

Examples:

Parallelograms fave some important properties:

1. Opposite sides are congruent
2. Opposite angles are congruent
3. Consecutive angles are supplementary
4. The diagonals divide it into two congruent triangles
5. The diagonals bisect each other

Let's work with some of

these parallelograms!

Example:

The opposite sides of a parallelogram are
represented by $2 x+10$ and $5 x-20$. Find the length of unlabeled side.

$2 x+10=5 x-20$
$30=3 x$
$x=10$
so
$4 x-1 \rightarrow 4(10)-1=39$

Example:

If one angle of a parallelogram is 60 degrees, find the number of degrees in the remaining 3 angles.

Opposite angles are equal, so there is another angle of 60. Since consecutive angles are supplementary (add to 180), the other two angles are the supplements of $60(180-60=$ 120). So the four angles are:
$60,60,120,120$

Example:

The measures of angles \mathcal{A} and \mathcal{B} of parallelogram $\mathcal{A B C D}$ are in the ratio of 2:7. Find the measures of angle \mathcal{A} and angle \mathcal{B}.

Angles A and B are consecutive and
supplementary. We can express the
ratios using x.
$2 x+7 x=180$
$\begin{aligned} & 9 x=180 \\ & x=20\end{aligned}$
Angle A was the smaller angle:
$m \angle A=2 x$
$m \angle A=2(20)=40$
Angle B was the larger angle:
$m \angle B=7 x$
$m \angle B=7(20) 140$

Example:

In quadrilateral $P R S \mathcal{T}$, the perimeter is 49 .
$\mathcal{P R}=x, \mathcal{R} S=x+3, S \mathcal{T}=2 x+4$, and $\mathcal{T} \mathcal{P}=3 x$. Find the le neth of the shortest side of the quadrilateral.

Example:
If $\mathcal{A B C D}$ is a parallelogram and the slope of $\overline{A B}$ is $\frac{1}{3}$, then the slope of $\overline{C D}$ is _-_-_- .

Parallel lines have the same slope!
A. 3
B. $\frac{1}{3}$
C. $-\frac{1}{3}$
D. -3

Example:
In parallelogram LMNO, find the values of x and y.
$3 x+y=25$ and $2 x=16 y$
solving the second equation for x :
$x=8 y$. Plugging this into the first equation:
$3(8 y)+y=25$
$24 y+y=25$
$25 y=25$
$y=1$
So $x=8 y=8(1)=8$

The word 'tessera' in latin means a small stone cube. They were used to make up 'tessellata' - the mosaic pictures forming floors and tilings in Roman buildings

Say What??!!

\mathcal{A} tessellation, or tiling, is created when a shape is repeated over and over again covering a plane without any gaps or overlaps.

These can be fun to create and are often used in art and design.

http://gwydir.demon.co.uk/jo/tess/triex.htm

http://www.concretenetwork.com/concrete/concrete_patio/st amped_concrete_is_first_class.htm
M.C.Escfer(1898-1972) is one of the world's most famous graphic artists who's art incorporated complex geometric patterns and many tessellations in his symmetry drawings.

Check out the official we b site at:
fttp://www.mcescher.com/

Escfuer's SVMMMETRV $\mathcal{N O} 0.20$
fittp://www.mcescher.com/

$$
\begin{gathered}
\text { Escfier's Metamorpfosis II } 1940 \\
\text { http://www.mcescher.com/ }
\end{gathered}
$$

Escher's Reptiles 1943
fttp://www.mcescfer.com/

