Glencoe Geometry ry Chapter 6.3 \& 6.4

Rect angles, Squares, \&

Rhomb

Remember:
Polygons are closed geometric shapes.
Quadrilaterals are 4-sided polygons.
Parallelograms are quadrilaterals with both pairs of opposite sides parallel to eacfiother.

Today we take a closer look at three special types of Parallelograms: Rectangles, Squares, and RGombi.

Definition:
A rectangle is a quadrilateral with four right angles.

A Rectangle's diagonals fave a special property: $\mathcal{H} \mathcal{E Y}$ ARE CO NGRZIENTI!!

Because rectangle $\mathfrak{A B C D}$ is a parallelogram, $\mathcal{A E} \cong \mathscr{E C} \mathcal{Z} \mathcal{E} \cong \mathscr{E B}$
D
$\mathcal{B Z L}$
Since it is a rectangle, we also know that $\overline{\mathcal{A C}} \cong \overline{\mathcal{B D}}$
This forms two sets of congruent isosceles triangle $s: \triangle \mathcal{A} \mathcal{E} \cong \cong \mathscr{B E C}$ making all the half. diagonal segments congruent to eacfiother!!

Example:
In rectangle $\mathcal{A B C D}, \mathscr{A C}=24$ and $\mathcal{D E}=2 \mathcal{X}-8$. Find \mathcal{X}.
A. 16
B. 13
C. 7
D. 10

$$
A C=24 \text { means } C E=A E=24 / 2=12
$$

So $D E=C E$
$2 x-8=12$
$2 x=20$
$x=10$

Example:
In rectangle $\mathcal{W} \mathcal{J} Z, m \angle 1=40^{\circ}$. Find $m \angle 2$.

A. 20
B. 70
C. 140
D. 40

Triangle XVY is an isosceles angle, so the base angles 2 and 3 are congruent. Their sum is the supplement of angle 1.
So $m \angle 1+m \angle 2+m \angle 3=180$, since $m \angle 2=m \angle 3$, we can substitute.
$40+m \angle 2+m \angle 2=180$
$40+2(m \angle 2)=180$
$2(m \angle 2)=140$
$m \angle 2=70$

Definition:

A square is a quadrilateral with four right angles, and four congruent sides.

$$
\overline{A B B} \cong \overline{B D} \cong \overline{D C} \cong \overline{C A}
$$

Squares have all the same properties of rectangles and some additional ones to boot!

The slopes of $\overline{\mathcal{A D}}$ and $\overline{\mathcal{B C}}$ are negative reciprocals of each other.
2. bisect a pair of opposite angles

$m \angle 1=m \angle 3=45^{\circ}$. If fact, all the numbered angles are congruent and equal 45°.

The diagonals form 4 congruent isosceles triangle s! What a de al!!

Example:
In square $\mathscr{M A T H}$, If $\mathcal{E A}=x^{2}+1$ \& $\mathscr{K}=3 x+11$, find the value of \mathcal{X}. The diagonals are congruent and bisecteachother,
 so all 4 interior segments are congruent, so $X \mathcal{X I}=x$
$x^{2}+1=3 x+11$
$x^{2}-3 x-10=0$
$(x-5)(x+2)=0$
$x=5,-2$
We are not interested in negative lengths, so $x=5$.

Definition:

A rhombus is a quadrilateral with four four congruent sides.

Unlike the rectangle and the square, the angle s of rhombus need not be right angles, but other than that, it's properties are similar to the square.

1. $\overline{\mathcal{L O}} \cong \overline{\mathcal{O V}} \cong \overline{\mathcal{V E}} \cong \overline{\mathcal{E L}}$
2. $\overline{\mathcal{L V}} \perp \overline{O \mathcal{E}}$
3. $\angle 1 \cong \angle 3 \cong 6 \cong 8$ and $\angle 5 \cong \angle 7 \cong \angle 2 \cong \angle 4$
(Gut these two sets are not necessarily congruent to each other).

Example:
In rhombus EFGH, $m \angle 1=57^{\circ}, \mathcal{H} \mathcal{E}=13, \mathcal{H P}=12$. What is $m \angle 2$? What is PE?

$$
\begin{aligned}
& \text { Since the diagonals are } \\
& \text { perpendicular, we know } \\
& 3 \quad \angle 4=90^{\circ} \text {. } \\
& \text { Considering } \triangle \text { EPH, the sum of its } \\
& \text { interior angles equal } 180 \text {. } \\
& \text { So... } \\
& \angle 1+\angle 2+m \angle 3=180 \\
& \quad+m \angle 2+90=180 \\
& m \angle 2=180-90-57 \\
& m \angle 2=33
\end{aligned}
$$

Since the diagonals are perpendicular, we know $\triangle \mathcal{H} \mathcal{E P}$ is a right triangle. Using the Pythagorean Theorem, with $\overline{\mathcal{H E}}$ being the hypotenuse, we get

$$
\begin{aligned}
& (\mathcal{H} \mathscr{P})^{2}+(\mathcal{P E})^{2}=(\mathcal{H} \mathcal{E})^{2} \\
& (12)^{2}+(\mathscr{P E})^{2}=(13)^{2} \\
& 144+(\mathscr{P E})^{2}=169 \\
& \mathscr{P E}=\sqrt{169-144} \\
& \mathscr{P E}=5
\end{aligned}
$$

Say What??!!

1. A square is a_{-}_-_-_-_-
A. rhombus
B. rectangle
C. parallel logram
D. all of these
2. What is the best description of a quadrilateral with four right angles?
A. square
B. rhombus
C. parallel logram
D. rectangle
3. Which statement is false?
A. Every rhombus is a quadrilateral.
B. Every rhombus is a parallelogram.
C. Every rhombus is a square.
D. Every square is a rhombus.
4. The most specific description of the

A. square
B. rhombus
C. rectangle
D. parallelogram
5. Choose the most precise description for the figure shown.

A. parallelogram
B. square
C. rhombus
D. quadrilateral
