Glencoe Geomet ry Chapter 6.3 \& 6.4

Rect angles, Squares, \&

Rhomb

Remember:
are closed geometric shapes. are 4 -sided polygons. are quadrilaterals with both pairs of opposite sides parallel to each other.

Today we take a closer look at three special types of Parallelograms: Rectangles, Squares, and Rfombi.

Definition:
A rectangle is a quadrilateral with four right angles.

A Rectangle's diagonals fave a special property: $\mathcal{H E Y}$ ARE CONGRUENT I!

Because rectangle $\mathfrak{A B C D}$ is a parallelogram, $\overline{A E} \cong \overline{E C} \mathcal{Z} \overline{D E} \cong \overline{E B}$ D
$\mathcal{B Z I}$
Since it is a rectangle, we also know that $\overline{A C} \cong \overline{\mathcal{B D}}$
This forms two sets of congruent isosceles triangle s: $\triangle \mathcal{A} \mathcal{D} \cong \triangle \mathcal{B E C}$ making all the half. diagonal segments congruent to each other!!

Example:
In rectangle $\mathcal{A B C D}, A C=24$
and $\mathcal{D E}=2 x-8 . F$ ind x.
A. 16 B. 13
$\begin{array}{ll}\text { C. } 7 & \text { D. } 10\end{array}$

Example:
In rectangle $\mathcal{W X S Z}, m \angle 1=40^{\circ}$. Find $m \angle 2$.

A. 20
B. 70
C. 140
D. 40

Definition:

\mathcal{A} square is a quadrilateral with four right angle s, and four congruent sides.

Squares fave all the same properties of rectangles and some additional ones to boot!
$\overbrace{}^{\mathcal{B}}$ The diagonals

1. are perpendicular

The slopes of $\overline{\mathcal{A D}}$ and $\overline{\mathcal{B C}}$ are negative reciprocals of each other.
2. bisect a pair of opposite angles

$m \angle 1=m \angle 3=45^{\circ}$. If fact, all the numbered angles are congruent and equal 45°.
The diagonals form 4 congruent isosceles triangles! What a de al!!

Example:
In square $\mathcal{M A T H}$, If $X \mathcal{A R}=x^{2}+1$ XT $=3 x+11$, find the value of x.

Definition:

A rhombus is a quadrilateral with four four congruent sides.

Unlike the rectangle and the square, the angles of rhombus need not be right angles, but other than that, it's properties are similar to the square.

1. $\overline{\mathcal{L O}} \cong \overline{\mathcal{O V}} \cong \overline{\mathcal{V E}} \cong \overline{\mathcal{E L}}$
2. $\overline{\mathcal{L V}} \perp \overline{O \mathcal{E}}$
3. $\angle 1 \cong \angle 3 \cong 6 \cong 8$ and $\angle 5 \cong \angle 7 \cong \angle 2 \cong \angle 4$
(but these two sets are not necessarily congruent to each other).

Example:
In rhombus $\mathcal{E F G} \mathcal{H}, m \angle 1=57^{\circ}, \mathcal{H E}=13, \mathcal{H P}=12$. What is $m \angle 2$? What is PE ?

Say What??!!

1. A square is a_{-}_-_-_-_-

$$
\begin{array}{lc}
\text { A.rfombus } & \text { B. rectangle } \\
\text { C. parallelogram } & \text { D. all of these }
\end{array}
$$

2. What is the best description of a quadrilateral with four right angle s?
A. square
B. rhombus
C. parallel logram
D. rectangle
3. Which statement is false?
A. Every rhombus is a quadrilateral.
B. Every rhombus is a parallelogram.
C. Every rhombus is a square.
D. Every square is a rhombus.
4. The most specific description of the

A. square
B. rhombus
C. rectangle
D. parallelogram
5. Choose the most precise description for the figure shown.

A. parallelogram
B. square
C. rhombus
D. quadrilateral
