Lesson 18

Glencoe Geomet ry Cha pt er 7.1, 7.2

Similarity \& Proportionality

Recall from alge bra the ide a of a ratio:
\mathcal{A} ratio is a comparison of two numbers or expressions a and 6 . It can be expressed as a quotient of the two numbers.

Ratios are useful to compare relative lengths, to establish a scale factor, or, when given units (such as $\frac{a \text { miles }}{6 \text { gallons }}$ or $\frac{\text { dollars }}{6 \text { pounds }}$), to express a rate.

Example:
What is the ratio of 15 to 5 ?

Sometimes it is convenient to write a ratio in simplified format, or with the denominator as a one.

Example:
The ratio of 5 to 2 can be written as ...

When two ratios are set equal to eacfiother, $a--------------$ is obtained.
$\frac{a}{b}=\frac{c}{d}$
A proportion is useful in finding missing values when a scale factor is involved. The equation can be solved $b y$

$$
a d=6 c
$$

Example:
What is 38% of 178 ?

Example:
Solve the proportion $\frac{2 x+1}{6}=\frac{7}{9}$.

So where does the geometry come in?

Two polygons are similar if and only if the ir corresponding angles are congruent and the measures of their corresponding sides are proportional. They have the same $\underline{S \mathcal{H A P E} \text { but different SIZES} . ~}$

The ratio of the lengths of the two corresponding sides of two similar polygons is called the scale factor.

Example:
Quadrilateral $\mathcal{A B C D}$ is similar to quadrilateral $\mathcal{W X} \mathcal{Z}(\mathscr{A B C D} \sim \mathscr{W} \mathcal{Z})$. Find the scale factor of quadrilateral $\mathfrak{A B C D}$ to quadrilateral $\mathcal{W X} \mathcal{Z} Z$.

Observe the following relationships:

$$
\begin{aligned}
& \angle \mathcal{A} \cong \angle \mathscr{W}, \angle \mathcal{B} \cong \angle \mathcal{X}, \angle C \cong \mathcal{Y}, \angle \mathcal{D} \cong \angle Z \\
& \overline{\mathcal{A B}} \sim \overline{\mathcal{W} X}, \overline{\mathcal{B C}} \sim \overline{\mathcal{X} \mathcal{Y}}, \overline{\mathcal{C D}} \sim \overline{\mathcal{D} Z}, \overline{\mathcal{D} \mathscr{A}} \sim \overline{Z W}
\end{aligned}
$$

To find the scale factor, we must find the ratio of the measure of a side of $\mathfrak{A B C D}$ to the measure of the corresponding side of WXYZ. (In this example, because we fave numeric measures on all sides, any pair of corresponding sides will work.)

Example:
Trapezoid $\mathcal{A B C D} \sim$ trapezoid EBFG. Find $\mathcal{A D}$.

Say What??!!

Map Link On the map of France shown, 2.5 centimeters represents 200 miles.
Find the actual distance from Cherbourg to Lyon if the map distance is 4.8 centimeters.

Use a proportion to find the actual distance.

