Lesson 19

Glencoe Geomet ry Chapter 7.3

Similar Triangles

On a previous episode, we talked about proving congruent triangles. There were certain combinations of given angles and sides that were sufficient to prove congruency.

One combination that did $\mathcal{N O T}$ work was the $\mathfrak{A A A}$ or $\mathfrak{A n g l e}$ - Angle - Angle combination.

$$
\triangle \mathcal{A B C} \sim \triangle \mathcal{D E F}
$$

If two shapes are similar, one is an enlargement, or $\mathcal{D I \perp A \mathcal { T I O N } \text { of the other. The }}$ shapes will have the same $\mathcal{S H A P E}$ but not the same $\mathcal{S I Z E}$. A dilation is $\mathcal{N O T}$ an IS O $\mathcal{M E T R} \mathcal{R}$, or rigid transformation.

This means that the two shapes will have the same angles and their sides will be in the same $\mathcal{P R O} \mathcal{P O} \mathcal{R} \operatorname{I}$ O \mathcal{N}.

$$
\triangle \mathscr{A} \mathcal{B C} \sim \triangle \mathcal{D E F}
$$

Facts about similar triangles:

$$
\begin{gathered}
\angle \mathcal{A} \cong \angle \mathcal{D} \\
\angle \mathcal{B} \cong \angle \mathcal{E} \\
\mathcal{C} \quad \angle \mathcal{F}
\end{gathered}
$$

$$
\frac{\mathscr{A B}}{\mathcal{D E}}=\frac{\mathcal{B C}}{\mathcal{E F}}=\frac{\mathcal{C A}}{\mathcal{F D}}
$$

$\mathcal{A} \mathfrak{N D}$

$$
\begin{gathered}
\frac{A \mathcal{B}}{\mathcal{D E}}=\frac{\mathcal{B C}}{\mathscr{E F}}=\frac{\mathcal{C A}}{\mathcal{F D}} \\
\frac{10}{20}=\frac{6}{12}=\frac{7}{14} \\
\frac{1}{2}=\frac{1}{2}=\frac{1}{2}
\end{gathered}
$$

The number $\frac{1}{2}$ in this case is called the ratio of SIMI LIT $\mathcal{T} \mathcal{D E}$.

The ratios could all equivalently be reciprocated to get 2. This means that the smaller triangle is $\mathcal{H A L F}$ the size of the larger, or the larger is ITWICE the size of the smaller.

Let's look at some problems involving similar triangles. There are many different $\mathcal{T} \mathcal{Y}$ PES of these problems, so there are also several different $\mathcal{S} \mathcal{T R} \mathcal{A} \mathcal{E} G I E S$ to deal with them. There may be more than one correct way to arrive at the correct answer.

The easiest problems dealing with similar triangles are those that involve two separate triangles.
Example:
For similar triangle s RAD and LZIV, solve for x.

\angle
These two triangles are sitting such that the ir corresponding parts are in the same position in each triangle.

If the triangles are not sitting in this manner, you can match the corresponding sides by looking across from the angles which are equal in each triangle.

Creating a proportion in one of two ways matching the corresponding sides:
a) small triangle on top: $\frac{10}{x}=\frac{6}{12} \rightarrow \frac{10}{x}=\frac{1}{2} \rightarrow 20=x$
6) Large triangle on top: $\frac{x}{10}=\frac{12}{6} \rightarrow \frac{x}{10}=2 \rightarrow x=20$

Many problems involving similar triangles fave one triangle $O \mathcal{N} \mathcal{T O P} O \mathcal{F}$ another triangle.

Example:

Find $\mathcal{B E}$. call it x

Since $\mathcal{D E}$ is marked to be parallel to $\mathcal{A C}$, we know that we fave angle $\mathcal{B D E}$ equal to angle $\mathcal{D A C}$ (corresponding angles). Angle \mathcal{B} is shared by both triangles, so the triangles are similar.

There are two ways to attack this problem:

1. Use $\mathcal{F O L L L}$ sides of the two triangles when dealing with the problem. Do not use $\mathcal{D A}$ or EC since they are not sides of triangles.

EASIER METHOD TO USE

$$
x \rightarrow^{1}=x \rightarrow x+9=3 x \rightarrow 2 x=9 \rightarrow x=
$$

or
2. Another way to do this problem is to realize a special property: if a line is parallel to one side of a triangle, it divides the other sides proportionately.

$$
\frac{4}{8}=\frac{x}{9} \rightarrow \frac{1}{2}=\frac{x}{9} \rightarrow 9=2 x \rightarrow x=4.5
$$

This property is not true for all polygons, and you must REMEMBER this property in order to use it, but it does simplify the math a bit.

Example:
Find EC. Call it x

$$
\begin{aligned}
& \frac{4}{10}=\frac{8}{8+x} \rightarrow \frac{2}{5}=\frac{8}{8+x} \rightarrow \\
& 2(8+x)=40 \rightarrow 8+x=20 \rightarrow x=12 \\
& \text { or from the parallel property, } \\
& \frac{6}{4}=\frac{x}{8} \rightarrow \frac{3}{2}=\frac{x}{8} \rightarrow \\
& 24=2 x \rightarrow x=12
\end{aligned}
$$

Example:
Find DE. call it x

$$
\begin{aligned}
& \text { Can't use the parallelproperty fere!! } \\
& \text { We } \mathcal{M U S} \mathcal{T} \text { use the full sides of the triangles. } \\
& \frac{5}{15}=\frac{x}{15} \rightarrow \frac{1}{3}=\frac{x}{15} \rightarrow 15=3 x \rightarrow x=5 \\
& \text { OR } \\
& \frac{15}{5}=\frac{15}{15} \rightarrow \frac{1}{5}=1 \rightarrow x=5
\end{aligned}
$$

HINN: If the triangles which are on top of one another are causing you problems, simply redraw the triangles as two separate figures.

Say What !? !?

Have you ever wanted to measure the height of a tall tree but didn't have a long enough tape measure, a ladder, or the guts? Did you know that all you really need to do this are a tape measure, a mirror, and your very own cerebralcortex?!?!

Eft tall

person

How tall is

Because both you and the tree are at right angles to the ground and the angle of incidence and reflection at the mirror are congruent, the two triangles formed are congruent, so we can set up a proportion to solve of κ.

$$
\frac{\kappa}{5}=\frac{102}{2} \rightarrow \frac{\kappa}{5}=51 \rightarrow \kappa=255 \mathrm{ft} .
$$

