Lesson 19

Glencoe Geomet ry Chapter 7.3

Similar Triangles

On a previous episode, we talked about proving congruent triangles. There were certain combinations of given angles and sides that were sufficient to prove congruency.

One combination that did $\mathcal{N O T}$ work was the $\mathfrak{A A A}$ or $\mathfrak{A n g l e}$ - Angle - Angle combination.

$$
\triangle \mathcal{A B C} \sim \triangle \mathcal{D E F}
$$

If two shapes are similar, one is an enlargement, or_-_-_-------_, of the other. The shapes will fave the same__-_-_-_-_ but not the same_______- A dilation is $\mathcal{N} O \mathcal{T}$ an _-_-_-_-_-_-, or rigid transformation.

This means that the two shapes will have the same angles and their sides will be in the same

$$
\triangle \mathscr{A B C} \sim \triangle \mathcal{D E F}
$$

Facts about similar triangles:

$$
\begin{gathered}
\angle \mathcal{A} \cong \angle \mathcal{D} \\
\angle \mathcal{B} \cong \angle \mathcal{E} \\
\mathcal{C} \quad \angle \mathcal{F}
\end{gathered}
$$

$$
\frac{\mathcal{A B}}{\mathcal{D E}}=\frac{\mathcal{B C}}{\mathcal{E} \mathcal{F}}=\frac{\mathcal{C A}}{\mathcal{F D}}
$$

$\mathcal{A} \mathfrak{N} \mathcal{D}$

$$
\frac{\mathcal{A B}}{\mathcal{D} \mathcal{E}}=\frac{\mathcal{B C}}{\mathcal{E F}}=\frac{\mathcal{C} \mathcal{A}}{\mathscr{F} \mathcal{D}}
$$

The number $\frac{1}{2}$ in this case is called the

The ratios could all equivalently be reciprocated to get 2. This means that the smaller triangle is __-_-_-__ the size of the larger, or the larger is ______-_-_ the size of the smaller.

Let's look at some problems involving similar triangles. There are many different $\mathcal{T Y P E S}$ of these problems, so there are also several different STRATEGIES to deal with them. There may be more than one correct way to arrive at the correct answer.

The easiest problems dealing with similar triangles are those that involve two separate triangles.
Example:
For similar triangles $\mathcal{R A D}$ and $\angle Z V$, solve for x.

Many problems involving similar triangles have one triangle $O \mathcal{N} \mathscr{T} O P \subseteq \mathcal{F}$ another triangle.

Example:
Find $\mathcal{B E}$.
Since $\mathcal{D E}$ is marked to be parallel to $\mathcal{A C}$, we know that we fave angle $\mathcal{B D E}$ equal to angle $\mathcal{D A C}$ (corresponding angles). Angle \mathcal{B} is shared by both triangles, so the triangles are similar.

There are two ways to attack this problem:

1. Ouse FULL sides of the two triangles when dealing with the problem. Do not use DA or EC since they are not sides of triangles.
2. Another way to do this problem is to realize a special property: if a line is parallel to one side of a triangle, it divides the other sides proportionately.

Example:
Find EC.

Example:
Find $\mathcal{D E}$.

HINN: If the triangles which are on top of one another are causing you problems, simply redraw the triangles as two separate figures.

Say What !? !?

Have you ever wanted to measure the height of a tall tree but didn't have a long enough tape measure, a ladder, or the guts? Did youknow that all you really need to do this are a tape measure, a mirror, and your very own cerebralcortex?!?!

5ft tall
person

How tall is

