Lesson 20

Glencoe Geometry Chapter 7.4 \& 7.5

Parallel Lines \&

Proport ional Parts

On previous episodes, we te look at both parallel lines and proportionality. Today we look at both of them together.
\mathcal{A} very important theorem in geometry states this relationship.

The Triangle Proportionality The orem:

If a line is parallel to one side of a triangle and intersects the other two sides in two distinct points, then it separates these sides into segments of proportional length, and vice - versa (The Converse)!!

In triangle $\mathscr{A} \mathcal{B} C$,
$\overline{D E} \| \overline{A C}$. The
theorem tells us
that $\frac{\mathcal{D A}}{\mathcal{B D}}=\frac{\mathcal{E C}}{\mathcal{B E}}$

We actually looked at this property informally last we e K, but today we will explore it in more de tail.

Example:
Based on the figure at right, which statement is false?

A. $\overline{\mathcal{D E}} \| \overline{\mathcal{B C}}$
B. $\triangle \mathscr{A} \mathcal{B C} \sim \triangle \mathscr{A} \mathcal{D} E$
C. $\triangle \mathcal{A} \mathcal{B C} \cong \triangle \mathcal{A D E} \quad \mathcal{D} . \operatorname{Dis}$ the midpoint of $\overline{\mathcal{A B}}$.

Here's another UERY important the orem:
A segment whose endpoints are the midpoints of two sides of a triangle is parallel to the third side of the triangle, $\mathfrak{A N D}$ its length is one-falf the length of the third side.

Example:
Find the value of x.

Are you ready for another theorem??? What else would you be watching for??

Theorem:
If three or more parallel lines intersect two transversals, then they cut off the transversals proportionally.

Example:
In the figure, $\overrightarrow{A D D}\|\overleftrightarrow{\mathcal{B E}}\| \overleftrightarrow{C \mathcal{F}}$, if $\mathscr{A} \mathcal{B}=4$,
$\mathcal{D E}=x+1, \mathcal{B C}=6$, and $\mathcal{E F}=3 x-9$, what is the value of x ?

\mathcal{N} ow, before we get on to some more important theorems, le ts look at . . . well... another $\mathcal{T H E O}$ REM. This one has its own special name (those are the really important ones)!

The Angle Bisector Theorem:

An angle bisector in a triangle divides the opposite side into segments that fave the same ratio as the other two adjacent sides. REREAD.

Example:
Find the value of x.

Example:
In the figure, $\overline{R Z Z}$ bisects $\angle \mathscr{T R S}$. Find the value of y.

Say What? !?!

Did you know that if two triangles are similar, there are not only special parts, but also special quantities that are also proportional to the corresponding sides??? Say $\mathcal{W} \mathcal{H} \mathcal{A} \mathcal{T}$?!?! Here's a summary of what I mean...

- The perimeters are proportional

- The altitudes are proportional

- The angle bisectors are proportional

- The medians are proportional

$$
\begin{gathered}
\text { Now you know. } \\
\text { Go out and use your ne w power wise fly!! }
\end{gathered}
$$

