Lesson 3

Glencoe Geomet ry Chapter 16 \& 17

Angles: Exploration \& Relationships

By the end of this lesson, you should be able to

1. Identify angles and \qquad angles.
2. Use the Angle Addition Postulate to find the of angles.
3. Identify and use congruent angles and the \qquad of an angle.
4. Identify and use special \qquad of angles.
5. Identify your favorite Math television program \qquad .

Remember from Lesson 1 that a ray has one fixed end and extends indefinitely in one direction. For example $\overrightarrow{Y V}$ in the figure at right. Since direction matters, $\overrightarrow{Y V}$ and $\overrightarrow{Y Z}$ are called
\qquad rays, but they share a common
 endpoint. Opposite rays are always collinear.

An angle is usually formed by two non-collinear rays with a common endpoint. The common endpoint is called the \qquad .

Give some names for the angle at right:

Notice in the last diagram, there was only one angle. You must be more careful when naming different angles that share a common vertex. In the diagram below, you CANNOT name either of the angle as just $\angle B!!!$ What are some names?

Angle $\angle A B E$ or $\angle E B A$ is called a \qquad angle, since $\overrightarrow{B A}$ and $\overrightarrow{B E}$ are opposites.

An angle separates a plane into three distinct parts: 1. The \qquad of the angle.
2. The \qquad of the angle.
3. and the angle itself.

We typically measure angles in \qquad using a \qquad .
*All angles this year will be in degrees. The degree symbol is
sometimes used, but without it, we infer that the measure is still in degrees:

$$
85^{\circ}=85
$$

http://z.about.com/d/math/1/0/f/1/protractor.jpg

Using the inner scale, we can say that the degree measure of $\angle A B C$ is 60 , or equivalently, $m \angle A B C=60$

By the Angle Addition Postulate, in the figure below, $m \angle H I J+m \angle J I K=m \angle H I K \ldots .$. Duhhhh $!!$

So, what is $m \angle H I J$ if $m \angle J I K=45^{\circ}$ and $m \angle H I K=100^{\circ}$?

We can also classify individual angles by their measures:

right angle $=90$

acute angle < 90

obtuse angle >90

straight angle $=180$
www.mathisfun.com
angles have the same measure. Which of the angles above are congruent to all others in the same class?

Two angles that add to 180 are said to be \qquad angles.

Two angles that add to 90 are said to be \qquad angles.
\qquad is a ray that divides and angle into two congruent angles.

Example:

If $\overrightarrow{G D}$ bisects $\angle C G E$, which angle is congruent to $\angle C G D$?

What other angle is congruent to $\angle C G E$?

When two lines intersect, they form four angles. When they intersect to form four right angles, we say the lines are \qquad , and denoted by the \perp symbol Not all lines are perpendicular to each other, though.

When two lines intersect, it is useful to classify angles by their relationship to other angles.

Angles-have a common vertex and a common side with no common interior points

Ex) $\angle 1 \& \angle 2, \angle 2 \& \angle 3, \angle 3 \& \angle 4, \angle 4 \& \angle 1$
Angles-non-adjacent angles across from each other. Vertical angles are congruent!!!

Ex) $\angle 1 \& \angle 3, \angle 2 \& \angle 4$
Pair-adjacent angles formed by opposite rays. Linear pairs will always be supplements of each other. Which angle above are linear pairs?

Example:

If $m \angle M Y Z=160$, what is $m \angle M Y W$?

Example:

Name two angles that are adjacent to $\angle W T V$.
$\begin{array}{ll}\text { A. } \angle 1 \text { and } \angle 2 & \text { B. } \angle 2 \text { and } \angle 3\end{array}$
$\begin{array}{ll}\text { C. } \angle W T V \text { and } \angle 3 & \text { D. } \angle 1 \text { and } \angle 3\end{array}$

Example:

If $m \angle 1=2 x$ and $m \angle 2=4 x$. Find the value of x if $\angle 1$ and $\angle 2$ are complementary.

Example:
 Find the value of x.

Say What??!!

Circle the right Answer:

1. Angles are measured in units called (sides) or (degrees).
2. In Figure $1, \angle 2$ and $\angle 3$ are (complementary) or (supplementary) angles.
3. A (compass) or (protractor) is used to find the measure of an angle.
4. In Figure 2, the two angles shown are (supplementary) or (congruent) angles
5. In Figure 3, $\angle 5$ and $\angle 6$ are (vertical) or (adjacent) angles.
6. Perpendicular lines intersect to form (obtuse) or (right) angles.
7. In Figure $3, A$ is called (a side) or (the vertex) of $\angle 6$.
8. In Figure $1, \angle 1$ and $\angle 4$ form a (linear pair) or (right angle).
9. In Figure 4, $\overrightarrow{K M}$ is the (vertex) or (bisector) of $\angle J K L$.

Figure 1

Figure 3

Figure 4

