

LESSON \&
Glencoe Geometry Chapter 4.1, 4.2
C lassifying Triangles \& A ngle M easure
BY THE END OF THIS LESSON, YOU SHOULD BE ABLE TO

1. I dentify the different parts of a triangle
2. Classify triangles by their angle measures
3. Classify triangles by their side lengths
4. Find the measure of different types of angles of a triangle.

We encounter triangles everyday, in all shapes and sizes. As you know, all triangles have 3 \qquad and 3 \qquad
We can classify them by the measure of the of their sides.

In an equmateral. triancle, all three sides are the same length. A n equilateral triangle is always equiangular.

\qquad In an ISOSCELES TRIANGLE, at least two sides are the same length. An isosceles triangle may be right, obtuse, or acute.

In a SCALENE TRIANOLE, none of the sides are the same length. A scalene triangle may be right, obtuse, or acute.
We can also classify angles by the \qquad of their interior angles.

In an acute trianale, all angles are less than right angles- each one is less than 90 degrees. An acute triangle may be equilateral, isosceles, or scalene.

In an OBTUSE TRIANGLE, one angle is
\qquad greater than a right angle- it is more than 90 degrees. A n obtuse triangle may be isosceles or scalene.

In a pIOAT TRIANGLE, one of the angles is a right angle- an angle of 90 degrees. A right triangle may be isosceles or scalene.

In an equianceutar triancale, all the angles are congruent- each one measures 60 degrees. An equiangular triangle is a kind of acute triangle, and is always equilateral. All equilateral triangles are also isosceles triangles, too!

1. Which does not describe $\triangle P Q R$
A. acute
B. isosceles
C. equilateral
D. obtuse

2. $\triangle A B C$ is

A. isosceles and scalene
B. equilateral
C. scalene but not

acute
D. scalene and acute
3. What type of triangle is $\triangle E F G$

A , right isosceles
B. acute equilateral
C. acute isosceles
D. right equilateral

The parts of an isosceles triangle also have special names.

http://library.thinkquest.org/2609/13s1.htm
opposite the base.
BASE - the side opposite the vertex
angle.
LEE - either of the 2 congruent sides.
BASE ANGLCS - the two
congruent angles opposite each leg.

EXAMPLE:

Triangle RST is isosceles with $\angle S$ as the vertex angle. If $S T=3 x-11, S R=x+3$, and $R T=x \cdot 2$, find $R T$.

A nother very important property of triangles is that the sum of the measures of all the interior angles is 180 DEGREES. If the sum is anything other, then we don't have a triangle. This is called the

EXAMPLE:

EXAMPLE:

What is $m \angle D$ in $\triangle D E F$

EXAMPRE:

Which statement is not true?
A. A triangle cannot be scalene and isosceles.
B. In an isosceles triangle, the base is congruent to one of the legs.
C. A triangle cannot be obtuse and contain a 90° angle.

http://tao.ca/~cupe3903/web/fil es/black\%20cat.gif D. A triangle can be obtuse and isosceles.

SAY WHAT?N:?

Triangles can also have
EXTERIOR ANGLES! That's right, angles - - - - - - - - . - . the triangle. A ngle x is an exterior angle of the triangle:

The exterior angle of a triangle is equal to the sum of the interior angles at the other two vertices. In other words, $x=a+b$ in the diagram. This is because x and y are supplementary! A ngles a and b are called remote interior angles. Their sum is also supplementary with the measure of angle y !
EXAMPICE:
Find $m_{\angle B} B$ if $m_{\angle A}=x+3$ and $m_{\angle} B=3 x+1$.

