Lesson 9

Glencoe Geomet ry Chapt er 4.3, 4.4, 4.5

Exploring Congruent Triangles

By the end of this lesson, you should be able to 1. Name and Label corresponding parts of congruent triangles.
2. Understand threetypes of congruence transformations.
3. Determine if two triangles are congruent.

This week we arestick ing with our topic from last w eek:

TRIANGLES

(They are by far the most popular geometric figures, go figure...)
When working with multipletriangles, it is important to recognize if any of them are the same and the same \qquad
If so, these triangles are said to be Congruent to each other.

Remember that triangles have six parts: 3 angles and 3 sides.

A triangle that is created from another by means an (or congruence transformation), $\overline{\text { will be congruent }}$ to the first.

We will look at threetypes: 1. A Reflection across aline.
2. A Rotation about a point.

3. A shift, slide or translation.

Example:

Is this transformation an isometry? Why or why not?

But w hat if westart w ith two different triangles, rather than creating onefrom an isometry? How do we determine if they are congruent?

If all the corresponding parts of two triangles are congruent (equal measures), then they are congruent. (This is actually an IFF statement!)

$\triangle A B C \cong \triangle D E F$

The cor responding congruent sides are marked with small straight-line segments called tick marks.
The cor responding congruent angles aremarked with arcs.

So given any two congruent triangles, there are 6 facts:

Luckily for us, when we need to show (or PROVE) that triangles are congruent, w e don't need to prove all six facts. There are certain combinations of the facts that are sufficient to prove that triangles are congruent.

1. SSS: If three sides of one triangle are congruent to three sides of another triangle, the triangles are congruent.

2. SA S: If two sides and the included angle of one triangle are congruent to the corresponding parts of another triangle, the triangles are congruent.

3. A SA: If two angles and the included side of one triangle are congruent to the cor responding parts of another triangle, the triangles are congruent.

4. $\mathrm{A} A S=S A \mathrm{~A}:$ If tw o angles and the nonincluded side of one triangle are congruent to the corresponding parts of another triangle, the triangles are congruent.

5. HL: If the hypotenuse and leg of one right triangle are congruent to the corresponding parts of another right triangle, the right triangles are congruent.

Say What??!!

Can we make a statement about congruent triangles under any other circumstances?

What if we knew two sides and the non-included angle of tw o triangles were congruent. Would the tw o triangles necessarily be congruent??????

SSA =A SS: This does NOT work, so be careful!!

There aretwo different possible configurations. Without more information, we cannot makea claim of congruence.

What if weonly knew that all three angles of tw o triangles were congruent?

AAA: This also does not work. Weneed at least one side length. We can, how ever, conclude that the triangles are \qquad (or proportional).

